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Abstract

The goal of this thesis is to develop machine learning approaches to analyze collections of
images without annotations. Specifically, given a collection of images as input, the machine
should discover analysis concepts related to properties of the world, such as the object class
or the underlying 3D geometry, without being taught this concept via manually annotated
examples. Advances in this area hold promises for industrial applications related to 3D (e.g.,
reconstructing a photorealistic scene with 3D actionable components for video games) where
annotating examples to teach the machine is difficult, as well as more specific applications
addressing a particular professional or personal need (e.g., analyzing the character evolution
from 12th century documents) where spending significant effort on annotating large-scale
datasets is debatable. The central idea of this dissertation is to build machines that learn to
analyze an image collection by synthesizing the images in the collection. We focus on three
important challenges to learning image analysis by synthesis.

The first challenge is to model the variability in different images of objects reflecting the
same object class. One of the most basic form of image analysis is to group images into object
classes related to different concepts. A simple analysis-by-synthesis approach to this problem
is the classical K-means algorithm introduced by James MacQueen in 1967, where instances of
each class are approximated by the average of the class. However, this kind of framework fails
when applied to images, where instances within each class demonstrate a strong variability.

The second challenge is to discover elements in the images, in such a way that elements
correspond to interpretable concepts like multiple objects in the image. Discovering elements
in images is typically tackled with bottom-up approaches that take advantage of low-level
image cues to compute meaningful image regions. An early example is the work of Brice and
Fennema in 1970, which breaks the image into atomic regions of uniform gray scale then use
heuristics to group them. Yet, because these low-level image cues are generally handcrafted,
such approaches typically struggle when applied to real-world images.

The third challenge is to recover 3D structure from 2D images. The perception of 3D from
images can be traced back to the thesis of Lawrence Roberts on Blocks World in 1963. In this
work, polyhedral 3D blocks are computed by detecting and matching the edges of an image
depicting a simple scene made of textureless polyhedral shapes. Today, state-of-the-art methods
for real-world scenes typically represent scenes through neural network weights, which are
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difficult to interpret and manipulate. Approaches representing scenes with meshes carry a
better interpretability, yet they typically compute meshes from annotations indicating the object
region and do not model the scene as a composition of 3D elements. To achieve our goal and
address these challenges, we present three key contributions.

The first contribution is a new conceptual approach to object class modeling. We propose to
represent the class of an image, a 2D object or a 3D shape, with a prototype that is transformed
using deep learning to model the different instances within the class. Specifically, we design
meaningful transformations (e.g., geometric deformations or color variations) and use neural
networks to predict the transformations that make the prototype similar to what is observed in a
given image. We demonstrate the effectiveness of this idea not only to cluster images, but also
to reconstruct 3D objects from single-view images. We obtain performances on par with the
best state-of-the-art methods, which all leverage handcrafted features or annotations.

The second contribution is a new way to discover elements in a collection of images. We
propose to represent an image collection by a set of learnable elements composed together to
synthesize the images and optimized by gradient descent. We validate this idea by discovering
2D elements related to different objects in a large image collection. Our approach has perfor-
mances similar to the best concurrent methods which synthesize images with neural networks,
and ours comes with better interpretability. We also demonstrate that this idea can be used to
discover 3D elements related to simple primitive shapes, given as input a collection of images
depicting a scene from multiple viewpoints.

The third contribution is more technical and consist in a new way to compute differentiable
mesh rendering. Specifically, we formulate the differentiable rendering of a 3D mesh as the
alpha compositing of the mesh faces in a decreasing depth order. Compared to prior works, this
formulation is key to enable us to learn 3D meshes without requiring object region annotations.
In addition, it allows us to seamlessly introduce the possibility to learn transparent meshes,
which we design to model a scene as a composition of a variable number of meshes.

Keywords: Image analysis, Unsupervised learning, Analysis by synthesis, Deep learning
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Résumé

Le but de cette thèse est de développer des approches d’intelligence artificielle (IA) pour
analyser des collections d’images sans annotations. Concrètement, étant donné une collection
d’images, l’IA doit découvrir des concepts d’analyse reliés aux propriétés du monde, telles
que la classe d’un objet ou la géométrie 3D sous-jacente, sans que ce concept soit enseigné
via des exemples manuellement annotés. Des avancées dans ce domaine sont prometteuses
pour des applications industrielles reliées à la 3D (e.g., reconstruire une scène photoréaliste
avec des composantes 3D manipulables pour les jeux vidéo) où annoter des exemples pour
entraîner l’IA est difficile, mais aussi pour des applications plus spécifiques répondant à un
besoin professionnel ou personnel particulier (e.g., analyser l’évolution des caractères dans les
documents du 12ème siècle) où employer des efforts conséquents pour annoter de larges bases
de données pose question. L’idée centrale de cette dissertation est de construire des IA qui
apprennent l’analyse d’une collection d’images en synthétisant les images dans la collection.
Nous nous concentrons sur trois problèmes importants à l’analyse d’image par synthèse.

Le premier problème est de modéliser la variabilité au sein d’images différentes des objets
reflétant la même classe d’objet. Une des formes les plus basiques de l’analyse d’image est de
regrouper des images dans des classes d’objet reliées à des concepts différents. Une approche
simple d’analyse par synthèse pour cette tâche est l’algorithme classique K-means introduit par
James MacQueen en 1967, où les instances de chaque classe sont représentées par la moyenne
de la classe. Cependant, de telles approches échouent lorsqu’elles sont appliquées aux images,
où les instances au sein de chaque classe possèdent une grande variabilité.

Le deuxième problème est de découvrir des éléments dans les images, d’une telle manière
que les éléments correspondent à des concepts interprétables comme plusieurs objets dans
l’image. Découvrir des éléments dans des images est typiquement résolu avec des approches
“bottom-up” utilisant des représentations d’image bas niveau pour calculer des régions d’images
pertinentes. Un exemple clé est le travail de Brice et Fennema en 1970, qui décompose une
image en régions atomiques de gris uniforme et utilise des heuristiques pour les regrouper.
Cependant, ces représentations d’image bas niveau sont souvent modélisées à la main, donc
ces approches ont du mal à être appliquées aux images naturelles.

Le troisième problème est de retrouver la structure 3D à partir d’images 2D. La perception
de la 3D à partir d’images peut être retracée à la thèse de Lawrence Roberts sur Blocks World
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en 1963. Dans ce travail, des blocs 3D polyédraux sont calculés en détectant et alignant les
contours d’une image illustrant une scène simple composée de formes polyédrales. Aujourd’hui,
l’état de l’art représente typiquement les scènes avec les poids d’un réseau de neurones, qui sont
difficilement interprétables et manipulables. Les approches représentant les scènes avec des
meshes ont une meilleure interprétabilité, mais elles calculent les meshes à partir d’annotations
indiquant les régions de l’objet et ne modélisent pas une scène comme une composition
d’éléments 3D. Pour atteindre notre but et résoudre ces problèmes, nous présentons trois
contributions clés.

La première contribution est une nouvelle approche conceptuelle à la modélisation de
classe d’objets. Nous proposons de représenter la classe d’une image, d’un objet 2D ou d’une
forme 3D, avec un prototype qui est transformé par apprentissage profond pour modéliser
les différentes instances au sein de la classe. Plus spécifiquement, nous introduisons des
transformations concrètes (e.g., des déformations géométriques ou des variations de couleurs)
et utilisons des réseaux de neurones pour prédire les transformations qui rendent le prototype
similaire à ce qui est observé dans une image donnée. Nous démontrons l’efficacité de cette
idée non seulement pour regrouper des images, mais aussi pour reconstruire des objets 3D à
partir d’une seule image. Nous obtenons des performances égales aux meilleures méthodes, qui
utilisent toutes des représentations d’image ad-hoc ou des annotations.

La deuxième contribution est une nouvelle manière de découvrir des éléments dans une
collection d’images. Nous proposons de représenter une collection d’images par un ensemble
d’éléments apprenables, composés pour synthétiser les images et optimisés par descente
de gradient. Nous validons cette idée en découvrant des éléments 2D reliés à des objets
différents dans une grande collection d’images. Notre approche a des performances semblables
aux meilleures méthodes qui synthétisent les images par réseaux de neurones, et est plus
interprétable. Nous démontrons aussi que cette idée peut être utilisée pour découvrir des
éléments 3D reliés à des formes primitives simples étant donné une collection d’images
illustrant une scène via différents points de vue.

La troisième contribution est plus technique et consiste en une nouvelle approche pour
calculer le rendu différentiable d’un mesh. Plus spécifiquement, nous formulons le rendu
différentiable d’un mesh comme l’alpha composition des faces du mesh par ordre de profondeur
décroissante. Comparée aux travaux précédents, cette formulation est clé pour apprendre des
meshes sans utiliser des annotations représentant les régions d’objet. En outre, cette formulation
nous permet d’introduire la possibilité d’apprendre des meshes transparents, que nous utilisons
pour modéliser une scène comme une composition d’un nombre variable de meshes.

Mots clés : Analyse d’image, Apprentissage non supervisé, Analyse par synthèse, Apprentissage
profond
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Chapter 1

Introduction

1.1 Goal

The central goal of this thesis is to develop machine learning approaches to analyze collections
of images without annotations. Concretely, given a collection of images as input, the machine
should discover analysis concepts related to properties of the world, such as the object classes,
their location or the underlying 3D geometry, without being explicitly taught this concept via
manually annotated examples. We focus on two analysis aspects, namely image-level analysis
and element-level analysis, that we illustrate in Figure 1.1 and that we define next.

Image-level analysis. We tackle problems that consider a set of images as input and aim at
associating to each image an image-level output. In contrast with prior works relying on strong
learning assumptions like off-the-shelf features or annotations, we aim at building models
that are able to learn from the raw images only. We study two computer vision problems
related to image-level analysis. We first focus on the classical task of image clustering, whose
goal is to split images into similarity groups, or equivalently to associate a group to each
image. In Chapter 3, we present a clustering method computing similarities directly in the input
image space and matching the performances of state-of-the-art feature-based approaches. We
then focus on the task of single-view reconstruction (SVR), which aims at computing the 3D
geometry depicted by each image in the collection. SVR is challenging and typically requires
manual labels associated to each image during training, like the ground-truth 3D model, the
viewpoint of the camera that took the picture or the image region representing the object.
In Chapter 5, we design an SVR system that does not require any annotations; it takes as input a
set of images depicting different instances of an object class and outputs the 3D reconstruction
for each image. We obtain performances that are on par with state-of-the-art methods that are
manually supervised.
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2 CHAPTER 1. INTRODUCTION

IMAGE-LEVEL ANALYSIS ELEMENT-LEVEL ANALYSIS

(a) Image clustering (b) Object discovery

(c) Single-view reconstruction (d) Multi-view 3D decomposition

Figure 1.1: Goal. We aim at developing unsupervised machine learning approaches to analyze image
collections without annotations. We focus on two image analysis aspects, namely image-level analysis
and element-level analysis, that we study through four computer vision problems. Image-level analysis
aims at computing for each image a single image-level output, like (a) a group for image clustering or
(c) a 3D reconstruction for single-view reconstruction. Element-level analysis instead aims at finding
elements in each image and computing for each element an element-level output, like (b) an object mask
for object discovery or (d) a primitive 3D shape for multi-view 3D decomposition.

Element-level analysis. We tackle problems that consider a set of images as input and aim
at finding elements in each image and associating to each element an element-level output.
Compared to previous works modeling images implicitly with neural networks, we aim at
representing an image collection with an explicit set of learnable elements that are interpretable.
We study two computer vision problems related to element-level analysis. First, we tackle the
task of object discovery, whose goal is to locate and identify the recurrent objects in the image
collection. In Chapter 4, we introduce a new image modeling consisting in the explicit alpha
compositing of learnable sprites, that matches the state-of-the-art performances of implicit
image models. Then, we focus on the task which aims at decomposing a scene represented
by a collection of multiple view images into a set of 3D geometric primitives. This task has
rarely been studied and we refer to it as multi-view 3D decomposition. In Chapter 6, we present
an approach that computes a primitive-based 3D reconstruction by optimizing learnable and
textured superquadric meshes through image rendering. We report performances that are much
better than state-of-the-art methods which all fit 3D primitives in a pre-computed 3D point
cloud of the scene.
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1.2 Motivations

Compared to machines that are explicitly taught how to analyze images via manually anno-
tated examples, analyzing image collections without any annotations is motivated by several
theoretical advantages as well as a wide range of applications.

Advantages. Analyzing images without annotations is related to machine learning problems
that are unsupervised, in contrast with the supervised problems, where machines can learn
via the supervision of annotated examples. Such an unsupervised setting is motivated by four
theoretical benefits.

Flexibility. Supervised approaches often require experts to annotate a considerable amount
of data to teach a machine to predict the desired output. Depending on the problem,
these annotations are typically the result of a costly and tedious process that can be
difficult to scale. On the contrary, methods learned without manual supervision can be
seamlessly applied to new data, without spending any effort on building the annotations.
For example, our clustering approach developed in Chapter 3 for images was adapted to
3D and audio data by Loiseau et al. [2021, 2022a].

Generalization. In some cases, annotations can be extremely challenging to acquire. For
example, defining the 3D reconstructions for a large collection of real-world images
is difficult; the most closely related datasets are either synthetically generated using
simulation engines (e.g., Chang et al. [2015]; Roberts et al. [2021]) or limited in diversity
and size (e.g., Reizenstein et al. [2021]; Collins et al. [2022]). Consequently, approaches
learned on such targeted data typically generalizes poorly to more complex data. This is
not the case for unsupervised methods that can learn from the vast amount of available
data. For example, the unsupervised single-view reconstruction approach we present
in Chapter 5 is not limited to the 3D reconstructions of synthetic car images like the
supervised approach from Niemeyer et al. [2020]; it can successfully be applied to
real-world car images.

Robustness. The annotations necessary to learn supervised machines are typically acquired
by a manual or automatic process that makes approximations and errors when building
the ground-truth annotations. This introduces noise in the dataset and potentially harms
the performances of the learned system. Conversely, unsupervised approaches do not
suffer from noisy ground truth. For example, in Chapter 6, we accurately find 3D scene
decomposition by fitting textured primitives through rendering in the multiple views
of real-world scenes like DTU [Jensen et al., 2014]. Prior state-of-the-art methods
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(a) Augmented reality (b) Virtual reality

(c) Historical data analysis (d) Earth imagery analysis

Figure 1.2: Applications. Examples of applications where unsupervised image analysis hold high
promises includes: (a) augmented reality (© Andrey Popov/Adobe Stock), (b) virtual reality [Kerbl
et al., 2023], (c) historical data analysis [Siglidis et al., 2023], and (d) Earth imagery analysis [Vincent
et al., 2023]

like Ramamonjisoa et al. [2022]; Liu et al. [2022] instead fall short for this real-world
scenario, because primitives are computed from the 3D ground-truth point cloud which
is extremely noisy and incomplete.

Less human bias. Another theoretical benefit that is important to emphasize, is the fact that
unsupervised methods are less prone to human bias than supervised ones. Indeed,
supervised methods are learning from annotations which are typically made by a group of
individuals with different environments, cultural backgrounds and experiences. During
the annotation process, these individuals may unconsciously introduce their preferences
or prejudices that will influence the output of the resulting machine. These biases can
lead to systems that are inaccurate or unfair, and thus raise ethical concerns. Although
human bias can still be introduced during the data collection, unsupervised approaches
are not influenced by manual and bias-prone annotations.

Applications. Compared to supervised approaches to image analysis, discovering analysis
concepts from image collections holds bigger promises for applications where annotations are
scarce or impossible to acquire. Figure 1.2 shows four examples of applications.
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Augmented reality. Augmented reality corresponds to the addition of artificial effects or artifi-
cial 3D assets to our visual world captured by various sensors as illustrated in Figure 1.2a.
Today, the creation of artificial 3D assets is a manual task requiring significant efforts
from a graphic designer, who typically takes inspiration from a drawing or an image. One
way to facilitate this process is to build a system that automatically generates a 3D asset
from a given image, as formulated by the single-view reconstruction problem. Collecting
annotations to solve this task in a supervised manner is challenging, as it requires to
create a realistic 3D asset that accurately corresponds to each image. Consequently,
supervised methods like Choy et al. [2016]; Groueix et al. [2018]; Wang et al. [2018] are
typically limited to synthetic annotated datasets and struggle to be applied to real-world
images. Learning to solve this task without annotations is thus especially appealing.
In Chapter 5, we present a completely unsupervised approach that learns to reconstruct
3D objects from real-world images.

Virtual reality. The goal of virtual reality is to create a fully immersive and virtual world that
individuals can interact with through their avatars. An important aspect of this application
is the reconstruction of 3D scenes that are as realistic as possible. However, common
libraries of 3D assets like Sketchfab or TurboSquid are typically costly to collect, orders
of magnitudes smaller than standard image databases, and corresponding 3D models
typically lack realism. Besides, creating a realistic 3D scene from scratch requires a
tremendous amount of work from a graphic designer. In contrast, recent neural advances
in 3D reconstruction from multi-view images like Mildenhall et al. [2020]; Müller et al.
[2022]; Kerbl et al. [2023] enable to reconstruct a 3D scene with outstanding realism in
a few minutes (Figure 1.2b). One shortcoming of such approaches is that they do not
model objects or elements, making it difficult to understand and manipulate the resulting
3D scene. In Chapter 6, we solve this shortcoming by presenting an approach which
outputs a 3D reconstruction made of simple geometric primitives. In particular, this
primitive-based 3D reconstruction is actionable: it allows us to perform element-based
physical simulations and scene editing without any effort.

Historical data analysis. The main difficulty with historical data compared to everyday-life
data like natural images, is the need of qualified experts to annotate and analyze them.
As a result, datasets with annotations are hard to gather and when they exist, they are
typically of relatively small scale. This hinders the use of supervised machine learning
methods to facilitate the analysis process. For example, analyzing the evolution of
characters from historical handwritten charters remains a difficult yet important problem
for paleography. To tackle this specific task, the work of Siglidis et al. [2023] on text

https://sketchfab.com
https://www.turbosquid.com/
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line analysis (Figure 1.2c) is building on top of the unsupervised object discovery model
introduced in Chapter 4.

Earth imagery analysis. Analyzing images of Earth is at the core of many critical applications
like climate change monitoring, agricultural-related predictions or even urbanization stud-
ies. Earth imagery typically corresponds to large-scale datasets of very high-resolution
images that evolve through time. Hence, the process of collecting annotations in this
scenario is even more tedious and costly than natural images, and having methods that
learn without supervision becomes even more appealing. For example, Vincent et al.
[2023] analyze agricultural images without annotations (Figure 1.2d) by leveraging the
clustering framework described in Chapter 3.

1.3 Approach and context

Analyzing image collections without annotations is a broad and difficult problem. Early
methods typically focus on building intermediate image representations, or features, that are
used to run unsupervised analysis models. Such a featured-based approach is a two-stage
process that often requires to carefully tune the representation depending on the analysis task.
In addition, because features cannot be easily associated to meaningful concepts of our world,
the results output by these methods are difficult to interpret.

In this dissertation, the central idea is to build machines that learn to analyze an image
collection by synthesizing the images in the collection. More concretely, given a collection
of images and an analysis task, we first design a differentiable image formation model that
explicitly exhibits the desired analysis concept. Then, we leverage deep learning softwares and
their optimization tools to update our model parameters by minimizing a loss between images
and their reconstructions through gradient descent. Figure 1.3 illustrates the framework with
the general setup and an applied example. This idea is related to the paradigm of analysis-by-
synthesis, where an analysis task is performed by synthesizing the data. In machine learning
terms, it is a generative approach to solving a problem, as opposed to a discriminative one.

Learning image analysis by synthesis has several advantages. First, such an approach is
unsupervised and data-driven: models are automatically learned from the data, thus removing
the need for annotations and handcrafted and data-specific priors. Second, because the analysis
concept is explicitly modeled within the image formation process, it leads to results that are
explainable. In contrast with deep black-box systems, this is an important aspect with two
major benefits: (i) it helps decision-making because the end-user understands why the system
made this prediction, and (ii) it favors further improvements by experts because the system is
intuitive. Finally, recent approaches showcase that unsupervised deep learning is powerful and
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(a) General setup (b) Example for a single-view reconstruction model

Figure 1.3: Approach. We propose to learn analysis models by synthesizing images, a framework
known as analysis-by-synthesis. (a) Specifically, for each analysis problem, we design a model using
a deep learning software like PyTorch and update our model by minimizing a loss between images
(input, in blue) and their reconstructions (output, in green) through gradient descent. (b) We illustrate
the framework with the example of an abstract model designed for single-view 3D reconstruction.

effective, in the field of computer vision [Mildenhall et al., 2020; Ramesh et al., 2021] but also
in other domains like natural language processing [Radford et al., 2018, 2019].

1.4 Challenges

Learning analysis models by synthesis is difficult because it requires the design of a learnable
image generation model that explicitly exhibits the desired analysis concept, e.g. the 3D
geometry depicted by the image. This is typically not the case for standard generative models
like autoencoders [Kramer, 1991; Hinton et al., 2006], variational autoencoders [Kingma
and Welling, 2014], generative adversarial networks [Goodfellow et al., 2014] or diffusion
models [Ho et al., 2020] which generate images implicitly through neural networks. We identify
the following three independent challenges to learning image analysis by synthesis.

Modeling objects from the same class. One of the most basic form of image analysis is to
group images or objects into classes related to different concepts, like a cat or dog concept.
Learning this task through generation not only requires modeling different object classes during
the generation process, but also addressing the variability of objects belonging to the same class.
A simple approach in this direction is the classical K-means algorithm introduced by MacQueen
[1967], where each class is represented by a different prototype and each sample is assigned to
the closest prototype. However, such a framework does not model object variations within a
class, and thus typically fails in the case of images, where objects exhibit a strong variability.

Discovering elements. Finding elements in an image that correspond to interpretable con-
cepts like multiple objects is a difficult problem that can be traced back to the work of Brice
and Fennema [1970]. Beyond the association of a single output to a single image, discovering
elements by synthesis requires to explicitly model different elements during the image gen-
eration, which comes with three main hurdles. First, the number of elements to discover is
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not known a priori, and it typically differs from one image to another. Hence, this involves
modeling a variable number of elements which is a hard task as it involves optimizing over a
discrete variable. Some recent works tackle the problem using reinforcement learning [Tulsiani
et al., 2017a] or probabilistic approximations [Paschalidou et al., 2019]. Second, modeling
elements increases ambiguity as it multiplies the number of possibilities to synthesize the exact
same image. For example, the image of an 8 digit can either be associated to a single 8 digit
or to two 0 digits. Third, composing elements during image generation naturally introduces
occlusions between the elements which are difficult to handle.

Learning 3D from 2D. The perception of 3D from 2D images is a long standing problem
that can be dated back to the early Blocks World model of Roberts [1963]. It is a challenging
and ill-posed task because the objective is to recover the 3D information that has been lost
while generating the image by 3D-to-2D projection. The 3D perception from images is
mainly tackled in two settings, namely multi-view stereo which aims at reconstructing the
3D geometry of a scene represented by multiple images taken from different viewpoints, and
single-view reconstruction which aims at reconstructing the 3D geometry of a scene depicted
by a single image. In both cases, recent advances [Mescheder et al., 2019; Niemeyer et al.,
2020; Mildenhall et al., 2020] enable the 3D reconstruction of objects and scenes that are
realistic and accurate. However, they are typically represented with weights of neural networks,
thus making it difficult to interpret, manipulate and integrate the results into standard computer
graphics pipelines for further applications. A mesh is a much more appealing 3D representation
from that perspective, yet most advanced mesh-based works [Liu et al., 2019; Goel et al., 2020,
2022] compute meshes from object mask annotations and they do not model the scene as a
composition of 3D elements.

1.5 Contributions

To tackle these challenges, we present the following three contributions.

Object class modeling with prototypes and deep transformations. We introduce a new
conceptual approach to object class modeling. We propose to represent the class of an image, a
2D object or a 3D shape, with a prototype that is transformed using deep learning to model the
different instances within the class. Specifically, we design differentiable parametric functions
corresponding to meaningful transformations (e.g., geometric deformations, color variations or
morphological changes) and use neural networks to predict the transformation parameters that
make the prototype look similar to what is observed in a given image. We simultaneously learn
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the prototype and the deep predictors by gradient descent. We demonstrate the effectiveness of
this idea to cluster images in Chapter 3 using prototypical images and 2D transformations as
well as to reconstruct 3D objects from single-view images in Chapter 5 using prototypical 3D
shapes and deep 3D deformations. In both cases, we obtain performances on par with the best
state-of-the-art methods which leverage handcrafted features or annotations. In particular, this
allows us to introduce a state-of-the-art image clustering method that performs clustering in
pixel space.

Discovery by composition of learnable elements. We propose a new way to discover
elements in images by representing an image collection with a set of learnable elements
composed together to synthesize the images and updated by gradient descent. We first showcase
in Chapter 4 how this idea can be used to discover 2D elements, in the form of learnable sprites,
from a large collection of images depicting recurrent objects. Then, we further demonstrate
this idea effectiveness in Chapter 6 by discovering 3D elements, in the form of learnable
superquadric meshes, from a collection of images depicting a scene from multiple viewpoints.
To solve the problem of modeling variable number of elements, we propose two different
solutions in Chapter 4 and Chapter 6, respectively leveraging a greedy algorithm computing
the best solution among all possibilities and soft transparency variables that allow us to visually
remove elements by making them transparent. In both Chapter 4 and Chapter 6, we propose
to solve the challenges posed by (i) the image generation ambiguity with regularization terms
encouraging the use of a minimal number of elements, and (ii) occlusions with soft variables
and smoothness priors.

Advances in mesh-based differentiable rendering. This contribution is more technical
and consist in a new formulation to compute differentiable mesh rendering. Specifically,
building upon the mesh-based differentiable rendering of Liu et al. [2019], we formulate the
differentiable rendering of a 3D mesh as the alpha compositing of the mesh faces in a decreasing
depth order. This is notably in line with the layered image model we propose in Chapter 4
as well as the formulation of NeRF [Mildenhall et al., 2020] which can be interpreted as
alpha compositing points along the rays. This formulation is developed in Chapter 5 to learn
unsupervised single-view reconstruction and used in Chapter 6 to find 3D primitives in a
multi-view stereo setting. In addition, such a formulation allows us to seamlessly introduce the
possibility to learn transparent meshes in Chapter 6, which we design to model a scene as a
composition of a variable number of meshes.
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(a) Image clustering (Chapter 3) (b) Object discovery (Chapter 4)

(c) Single-view reconstruction (Chapter 5) (d) Multi-view 3D decomposition (Chapter 6)

Figure 1.4: Models and thesis outline. We leverage our three contributions to build analysis-by-
synthesis models to tackle the four computer vision problems we study in this thesis. Each model
corresponds to a specific chapter in the manuscript and it is represented with a high-level diagram.

1.6 Thesis outline

Our three contributions are leveraged to build analysis-by-synthesis models to tackle the four
computer vision problems we study in this thesis. Figure 1.4 illustrates our models with high-
level analysis-by-synthesis diagrams. Each model is related to a specific chapter that we present
next. This thesis is organized as follows.

Chapter 2: Background. In this chapter, we start by briefly introducing preliminary content
related to general concepts in machine learning, deep learning and computer vision that are used
throughout this manuscript. Then, we review the literature for each image analysis problem we
study in this thesis, namely image clustering, object discovery, single-view reconstruction and
multi-view 3D decomposition. For each problem, we strive to separate analysis methods based
on features from analysis methods learned by image synthesis.

Chapter 3: Deep Transformation-Invariant Clustering. This chapter introduces the foun-
dations of the first contribution of this thesis: a new object class modeling based on prototypes
and deep transformations evaluated in the context of image clustering. We first describe how to
represent an image collection by learning prototypical images and deep image transformations.
We then present the family of transformations we consider and how we parametrize them.
Finally, we empirically compare our approach to state-of-the-art methods on standard clustering
benchmarks that are relatively simple (e.g., MNIST [LeCun et al., 1998], Fashion-MNIST [Xiao
et al., 2017], SVHN [Netzer et al., 2011]), and showcase its applicability to real photograph
collections downloaded from the web like MegaDepth [Li and Snavely, 2018]. In contrast to
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concurrent approaches, our method performs clustering in pixel space and exhibits a strong
interpretability in the results.

Chapter 4: Discovering Objects With Sprite Modeling. We present a method to discover
2D recurrent objects in image collections. We model images as an alpha compositing of
several layers made of transformed prototypical images with transparency called sprites. More
specifically, we jointly learn in an unsupervised manner a small dictionary of sprites and
parametric functions predicting their transformations to explain the images. We experimentally
demonstrate that our method is on par with the state of the art on common multi-object discovery
datasets (e.g., Tetrominoes [Greff et al., 2019] and CLEVR [Johnson et al., 2017]). We also
qualitatively show that our model can be applied to challenging sets of internet images like
Instagram hashtag collections to discriminate foreground from background.

Chapter 5: Single-View Reconstruction Without Supervision. This chapter describes a
method that learns to perform single-view 3D reconstruction from a raw collection of single-
view images. Compared to prior works, this SVR approach does not rely on 3D shapes, multiple
views of the same instance, camera viewpoints, keypoints or object masks during learning; it
instead learns directly from raw images, without relying on any form of supervision. We first
introduce the complete image rendering process: starting from a prototypical ellipsoidal 3D
mesh, we deform and texture it using neural networks and render on top of a background image
in a differentiable manner. We then present how to learn such a system and avoid bad local
minima. Finally, we experimentally compare our approach to more supervised state-of-the-
art methods on the standard ShapeNet benchmark [Chang et al., 2015], and demonstrate its
advantages by applying it to real image collections like CompCars [Yang et al., 2015].

Chapter 6: Differentiable Blocks World. We develop the idea of discovering elements in
multi-view images by modeling them as the projection of simple 3D geometric primitives. More
specifically, given a set of calibrated multi-view images, we optimize a small set of textured
superquadric meshes such that they are photo-consistent across the different views. We first
describe how to parametrize a scene with primitive meshes, then present how to optimize our
model parameters through differentiable rendering. We quantitatively and qualitatively evaluate
our approach on DTU [Jensen et al., 2014] and demonstrate its superiority over state-of-the-art
methods. Lastly, we showcase its advantages on real-life captures (e.g., BlendedMVS [Yao et al.,
2020]), including straightforward physics-based simulations and amodal scene completion.
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Chapter 7: Conclusion. This chapter summarizes the contributions presented in this thesis,
and proposes potential avenues for future research.

1.7 Publication list

Four papers are presented in the manuscript [Monnier et al., 2020, 2021, 2022, 2023]:
• Monnier, T., Groueix, T., and Aubry, M. [2020]. Deep Transformation-Invariant Cluster-

ing. In NeurIPS (oral presentation).
• Monnier, T., Vincent, E., Ponce, J., and Aubry, M. [2021]. Unsupervised Layered Image

Decomposition into Object Prototypes. In ICCV.
• Monnier, T., Fisher, M., Efros, A. A., and Aubry, M. [2022]. Share With Thy Neighbors:

Single-View Reconstruction by Cross-Instance Consistency. In ECCV.
• Monnier, T., Austin, J., Kanazawa, A., Efros, A. A., and Aubry, M. [2023]. Differentiable

Blocks World: Qualitative 3D Decomposition by Rendering Primitives. In NeurIPS.
We open-sourced the code corresponding to all four papers1, created webpages2 for each

project with additional visualizations of the results of the thesis. The webpages received overall
around 5k unique visitors and the various project on GitHub received a total of 500 stars.

During my PhD, I was fortunate to participate in the following other publications [Monnier
and Aubry, 2020; Loiseau et al., 2021; Wysoczańska et al., 2022; Siglidis et al., 2023; Guédon
et al., 2023], which are not discussed in this manuscript:

With Mathieu Aubry
• Monnier, T., and Aubry, M. [2020]. docExtractor: An off-the-shelf historical document

element extraction. In ICFHR.
• Loiseau, R., Monnier, T., Aubry, M., and Landrieu, L. [2021]. Representing Shape

Collections with Alignment-Aware Linear Models. In 3DV.
• Siglidis, I., Gonthier, N., Gaubil, J., Monnier, T., and Aubry, M. [2023]. The Learnable

Typewriter: A Generative Approach to Text Line Analysis. arXiv:2302.01660 [cs.CV].

Without Mathieu Aubry
• Wysoczańska, M., Monnier, T., Trzciński, T., and Picard, D. [2022]. Towards Unsuper-

vised Visual Reasoning: Do Off-The-Shelf Features Know How to Reason? In NeurIPS

Workshops.
• Guédon, A., Monnier, T., Monasse, P., and Lepetit, V. [2023] MACARONS: Mapping

And Coverage Anticipation with RGB Online Self-Supervision. In CVPR.

1https://github.com/monniert
2https://www.tmonnier.com

https://github.com/monniert
https://www.tmonnier.com


Chapter 2

Background

Approaches to unsupervised image analysis problems related to this thesis can be broadly split
into two groups. The first group of methods traditionally leverages image representations, or
features, to run unsupervised analysis models. Such representations typically correspond to
general-purpose features or more recently, task-specific features that are learned. The second
group of methods does not rely on intermediate image representations; it instead proposes
to directly learn analysis models by synthesizing images. We respectively refer to these
groups as feature-based methods and synthesis-based methods. In this chapter, we first briefly
present preliminary content such as the machine learning context, foundational concepts in
deep learning that are used throughout the manuscript and standard approaches for computing
general-purpose features. Then, we review the literature related to each image analysis problem
we tackle in this thesis, namely image clustering, object discovery, single-view reconstruction
and multi-view 3D decomposition. For each problem, we strive to separate analysis methods
based on features from analysis methods learned by image synthesis.

2.1 Preliminary

All the approaches presented in this thesis correspond to unsupervised machine learning
methods, which are learned by gradient descent using the convenient automatic differentiation
(or auto-differentiation) of recent deep learning softwares. In this section, we first introduce
some machine learning context, describe important deep learning advances for computer vision
and present a general formulation of feature-based and synthesis-based approaches. Then, we
describe key approaches to compute general-purpose image features. Finally, we provide a
brief history of advances to compute 3D meshes through differentiable rendering, which we
build upon to propose our new formulation used in Chapters 5 and 6. We refer the reader

13
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to Hastie et al. [2001]; Goodfellow et al. [2016]; Szeliski [2010] for an exhaustive review of
machine learning, deep learning and standard image features respectively.

2.1.1 Machine learning

A machine learning problem is typically formulated as follows: given a dataset (e.g., an image
collection), the goal is to predict an outcome measurement, also called label (e.g., a cat or dog
image classification), based on the samples in the dataset. These predictions are performed by
a model that is directly learned from the data. Machine learning models are typically split in
two categories, depending on their learning settings.

Supervised learning. In this setting, we assume the access to a training set of data, in which
the outcome measurement for a set of samples is known. This annotated data is used to learn
a prediction model, which will be able to predict the outcome for new unseen samples that
are typically referred to as a test set. A good model is one that accurately predicts such an
outcome. In this case, models are called supervised because they are explicitly taught the
desired outcome via labeled examples. Classical examples of supervised prediction models are
linear least square models, nearest-neighbors methods associating the labels from neighboring
training samples, or support vector machines finding separating hyperplanes for classification.

Unsupervised learning. In this setting, the outcome measurement is not known for any
sample in the dataset. The task is rather to discover patterns in the data or try to describe how
the data are organized or clustered. Compared to supervised problems where the objective
is known, the objective in unsupervised problems is typically more difficult to formulate.
Classical examples of unsupervised prediction models are K-means and gaussian mixture
models for clustering, or principal components analysis and non-negative matrix factorization
for dimensionality reduction.

2.1.2 Deep learning

Deep learning is branch of machine learning where the prediction model is a neural network.
A neural network architecture corresponds to a family of parametric functions, which can be
seen as a sequence of differentiable functions (called layers). The parameters of the neural
network (also called weights) are optimized to minimize an energy function (called a loss
function). Because the optimization problem is in general non-convex, a global optimization
is impossible and it is typically solved with local optimization methods. The most common
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optimization framework for learning neural networks is to compute gradients using backprop-
agation [Ivakhnenko and Lapa, 1966; Rumelhart et al., 1985; Lecun, 1988] and update the
parameters by gradient descent methods. Today, recent deep learning softwares like PyTorch
or TensorFlow integrate an automatic differentiation tool computing gradients automatically
for any neural networks built of traditional layers, making it relatively easy to learn deep
neural networks, or even any differentiable model written using the built-in functions. We next
briefly describe few key architectures of neural networks related to computer vision, as well as
important advances that dramatically improved their learning.

Classical architectures. Today, there exists a large collection of neural network models that
are applied to tackle computer vision tasks. We here describe some important architectures that
are used throughout this manuscript.

Multi-layer perceptron. A multi-layer perceptron (or MLP) is one of the earliest and most basic
form of neural networks. It corresponds to a feed-forward network made of a sequence of
fully-connected linear layers (also known as perceptrons), each followed by a non-linear
differentiable functions like a rectified linear unit activation (ReLU) function [Fukushima,
1969]. MLPs build upon the perceptron model which is first introduced in the early work
of Rosenblatt [1958], and MLPs are still widely used as a key component of modern
deep learning approaches.

VGG. Introduced by Simonyan and Zisserman [2015], the family of VGG networks follows
the idea of AlexNet [Krizhevsky et al., 2012] to use a deep and wide convolutional neural
network (CNN) architecture, but proposes a simpler architecture with wider receptive
fields. One of the crucial downsides of VGG networks is that they correspond to huge
networks which take a lot of time to train. This is in part related to the problem of
vanishing gradients, where gradients become very small for deep layers due to the
successive application of the chain rule.

ResNet. This family of networks is presented in the work of He et al. [2016] to alleviate the
problem of vanishing gradients in deep architectures. Specifically, residual connections
are introduced, a concept allowing the signal to flow from one layer to another using an
identity function. In particular, it enables to effectively train much deeper architectures
which, in turn, significantly outperform existing architectures by the time of the publica-
tion on the ImageNet classification competition. Today, ResNet is still widely used as
one of the go-to backbone architectures to tackle computer vision tasks.

https://pytorch.org/
https://www.tensorflow.org/
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Learning advances. A lot of advances have been proposed to effectively train deep neural
networks. We here describe some important deep learning advances that are used throughout
this manuscript.

Optimizers. Effectively optimizing the weights of a neural network given a large dataset and an
objective function is a difficult task. The classical solution is to perform gradient descent
iterations on small random chunks of data called batches, which is much less expensive
than performing gradient descent iterations on the full dataset. In each gradient descent
iteration, the loss function is computed on a given batch, gradients are computed by
backpropagation and the weights are updated in the opposite gradient direction multiplied
by an hyper-parameter called learning rate. This process is known as batch stochastic
gradient descent (SGD). A lot of efforts have been dedicated to build optimizers that
accelerate the training of deep neural networks and improve their performances. This
notably includes introducing a momentum term to smooth the parameter updates (SGD
with momentum [Nesterov, 1983]) and adapting the learning rate for each parameter
using either an accumulation of all past gradients (AdaGrad [Duchi et al., 2011]) or an
exponentially moving average of the square gradients (RMSProp [Tieleman and Hinton,
2012]). Adam [Kingma and Ba, 2015] can be seen as combining both concepts of
momentum and RMSProp by smoothing the parameter updates using a moving average
of the gradient’s first and second moments. This optimizer is still widely used today, and
it is the one we use to optimize all the models proposed in this manuscript.

Normalization layers. Normalizing the inputs of a machine learning model is a classical tech-
nique to attenuate biases in the input and often improves the model performance. Because
a neural network is a sequence of layers that can be seen as micro models, the idea to
normalize the input of several of its layers has been studied to improve the neural network
performance. More specifically, the work of Ioffe and Szegedy [2015] introduces batch
normalization, a layer that standardizes the input of the following layer across a single
batch. This technique has proven to dramatically improve the learning of deep neural
networks, by accelerating the training and allowing better convergence. Other works like
LayerNorm [Ba et al., 2016], InstanceNorm [Ulyanov et al., 2016], BatchRenorm [Ioffe,
2017] or GroupNorm [Wu and He, 2019] further introduce normalization layers that are
designed to improve deep neural networks training.

Miscellaneous. A large amount of other techniques have been developed to improve the conver-
gence of neural networks. In particular, this includes techniques like data augmentation,
dropout [Srivastava et al., 2014], sophisticated scheduling of the learning rate [Smith,
2017] and weight decay [Loshchilov and Hutter, 2019].
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2.1.3 Feature-based vs synthesis-based

We describe a general formulation for feature-based and synthesis-based approaches to unsu-
pervised image analysis, and emphasize their differences.

Feature-based approach. An unsupervised analysis approach based on features typically
consist in two stages. In the first stage, a method is used to perform the extraction of meaningful
features (also known as descriptors or embeddings) representing the images. Each image can
be represented by a set of features corresponding to different locations of interest in the image
(or keypoints), or a single image-level feature. In the second stage, an unsupervised model takes
as input the set of features and outputs the desired analysis outcome (e.g., grouping the images
by similarity). Such a two-stage process requires to carefully select and tune the representation
depending on the analysis task. In addition, although recent approaches typically leverage
deep models that are learned separately in both stages, they do not fully benefit from deep
end-to-end learning advances. Note that feature-based methods typically corresponds to a
bottom-up approach: it starts by creating low-level features from the pixels, then it manipulates
the extracted features to build the desired outcome.

Synthesis-based approach. Analyzing an image collection by synthesis is instead top-down:
it aims at learning an analysis model by synthesizing the images in the collection, without
relying on a feature-based multi-stage procedure. Such approaches have been empowered by
recent deep gradient-based softwares which provide efficient tools like automatic differentiation
and advanced optimizers to seamlessly design and learn a desired synthesis model. Specifically,
the general structure for recent synthesis-based approaches is as follows: a differentiable
parametric model generating images is implemented and its parameters are learned through
gradient descent by minimizing a rendering loss (or reconstruction loss) between the sample
images and the predicted renderings.

2.1.4 General-purpose image features

Computing a feature that represents well an image or a local patch is at the very root of many
image analysis problems, like stereo matching, motion estimation or object tracking to name a
few. Designing good image representations is challenging because there is no clear answer to
what is the ideal image representation: should it contain information about the objects in the
image (e.g., their type, scale, texture), or should it model the depth of different image regions,
or something else? We first review a few examples of handcrafted features. Then, we describe
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image features that are learned, with a focus on features output by deep neural networks, which
we refer to as deep features.

Handcrafted features. Traditional image features are manually computed using heuristics
which are for example based on normalized pixel intensities [Brown et al., 2005], Gaussian
filtering [Freeman and Adelson, 1991] or image gradients [Freeman and Roth, 1995; Oliva and
Torralba, 2001; Lowe, 2004]. We describe a few examples of key handcrafted features that are
based on gradient:

HOG. The histogram of oriented gradients (HOG) computes a feature based on occurrences of
gradient orientation in localized portions of an image. It is first described in the patent
application of McConnell [1982] without specifically using the HOG term, and its usage
becomes widespread by Freeman and Roth [1995] and more significantly by Dalal and
Triggs [2005], who successfully demonstrate its effectiveness for pedestrian detection.
To represent an entire image, HOG features are typically computed in overlapping image
regions using a sliding window and concatenated, thus resulting in a dense representation.

SIFT. Scale invariant feature transform (SIFT) is introduced by Lowe [2004] and includes both
a keypoint detector and a feature descriptor. Compared to the dense HOG representation,
an entire image is typically represented by a set of SIFT features computed at the detected
keypoints. SIFT features are formed by computing the gradient at each pixel in a 16 → 16
neighborhood of a desired image location. Gradient magnitudes are downweighted by a
Gaussian function to reduce the gradient influence far from the center. 8-bin histograms
of gradient orientations are built in each 4 → 4 quadrant, resulting in a feature vector of
128 non-negative values. SURF features [Bay et al., 2006] are a variant of SIFT where
the feature extraction is significantly faster.

GIST. Introduced by Oliva and Torralba [2001], GIST corresponds to a compact representation
of an image based on the spatial envelope of its gradient information. Compared to a
SIFT representation based on local features computed at different keypoints, GIST aims
at computing a representation of the image that is global.

Deep features. A recent trend instead proposes to compute image features using deep
learning. The main benefit of deep features is that neural networks can automatically learn
a good representation to solve a desired task, while obtaining this level of representation
by manually designing hundreds of heuristics with millions of parameters looks unfeasible.
Methods computing deep features can be split into three groups, depending on how the neural
networks are learned.
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Learning with a supervised task. One of the most common solution to obtain deep features is to
train a neural network through a supervised task (e.g., the pioneering AlexNet [Krizhevsky
et al., 2012] for image classification on ImageNet benchmark [Deng et al., 2009]) and
use this pre-trained network as a feature extractor for any downstream application. This
strategy, also known as transfer learning, has quickly proven to be surprisingly very
effective [Donahue et al., 2014; Zeiler and Fergus, 2014; Oquab et al., 2014; Razavian
et al., 2014] and relies on the intuition that solving the supervised task requires to learn
image representations that are sufficiently good to be transferred to other data distributions
and other tasks. Note that in this case, training the network requires annotated examples.

Learning by image generation. Prior to the widespread solution of transferring supervised
knowledge, several works focus on computing deep representations without any annota-
tions, by learning a deep model that best synthesizes the images in the dataset. A classical
example in this direction is the autoencoder model [Hinton and Salakhutdinov, 2006;
Ranzato et al., 2007; Vincent et al., 2008], which is composed of an encoder mapping
the image to an intermediate representation (also known as the bottleneck) and a decoder
mapping this representation back to the image space. Other generative approaches like
variational autoencoders (VAE) [Kingma and Welling, 2014] or generative adversarial
networks (GAN) [Goodfellow et al., 2014] are studied for learning good image represen-
tations without supervision [Radford et al., 2016; Dumoulin et al., 2017; Donahue et al.,
2017]. However, the resulting performances are typically moderate.

Learning with a self-supervised task. The importance of obtaining good features combined
with the effectiveness of deep features sparked a real interest to shift the focus from
designing task-specific methods to learning general-purpose representations, or repre-
sentation learning, which became a new field in itself. Recent unsupervised approaches
for this problem typically leverage self-supervision, by manipulating the data to design a
supervised pretext task that will be used to train the network. A representative example
is the work of Gidaris et al. [2018] which randomly rotates the input image by a multiple
of 90→ and learns to predict the image rotation. The task is thus framed as a supervised
classification problem into four categories, without any manually annotated examples.
Common self-supervised techniques include relative patch position [Doersch et al., 2015],
image colorization [Zhang et al., 2016] or image inpainting [Pathak et al., 2016]. Today,
the most successful approaches [Chen et al., 2020; Grill et al., 2020; Gidaris et al., 2021;
Caron et al., 2021] are derived from the central idea of Dosovitskiy et al. [2014] which
proposes to learn representations that are invariant to common transformations of the
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data. This idea leverages the intuition that a good representation should not vary when
the input image is altered in a way that the semantic content is preserved.

We refer the reader to Caron [2021] for an exhaustive review of representation learning
literature. Overall, these methods are designed to output general-purpose features, yet they do
not solve an analysis task per se. One would have to apply an unsupervised algorithm on top of
the extracted features in order to compute the desired image analysis outcome (e.g., grouping
the images by similarity).

2.1.5 Mesh-based differentiable rendering

Recent 3D reconstruction approaches representing the scene with meshes leverage advances
in mesh-based differentiable rendering. One of the first attempts to render meshes in a dif-
ferentiable manner is the work of Loper and Black [2014]. In this work, they introduce a
differentiable renderer built upon the auto-differentiation framework Chumpy, by approximat-
ing derivatives with local filters that are applied differently whether a pixel contains occlusion
boundaries. Later, Kato et al. [2018] propose an alternative formulation based on manual
derivative approximations that are more suitable to learning neural networks. Another set of
methods proposes to instead approximate the rendering function with a differentiable function
that allows backpropagation. This idea is first presented by Liu et al. [2019] introducing the
classical SoftRasterizer, which is later computationally optimized by Ravi et al. [2020]. Other
works like [Chen et al., 2019b; Laine et al., 2020] build upon the SoftRasterizer idea and
proposes alternatives. We refer the reader to [Kato et al., 2020] for a comprehensive study.

In Chapter 5 and Chapter 6, we also build upon the idea of SoftRasterizer, but modify the
rendering formulation to enable the learning of 3D meshes from raw photometric comparisons,
without any silhouette information.

2.2 Image clustering

The goal of image clustering is to group images into object classes (or categories) associated to
different concepts without having access to any object class annotations to train a recognition
system. This is related to the widespread supervised task of image classification (or category
recognition as it used to be called), which assumes the access to a set of annotated examples to
train the system.
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2.2.1 Feature-based methods

We first review classical methods that leverage handcrafted features, then we discuss more
recent approaches based on deep features.

Classical methods. Prior to the groundbreaking AlexNet [Krizhevsky et al., 2012], category
recognition is still considered a largely unsolved problem even with training images, and thus
most classical methods tackle category recognition by assuming the access to a training set.
Such methods typically extract handcrafted features and learn a classification algorithm in a
supervised setting. Although these methods can theoretically be learned without annotations by
replacing the supervised classification algorithm with an unsupervised one, only few works
study this direction. We describe two classical approaches to category recognition, namely bag
of words and part-based models.

Bag of words. The bag of words approach (also known as bag of features, bag of keypoints)
represents an image as an unordered collection of features and is considered as one of
the simplest methods for category recognition. Specifically, it consists in computing
the distribution of quantized features (also called visual words) at detected location of
keypoints in the query image, and comparing this distribution to those found in the
training images. This idea is first explored by Sivic and Zisserman [2003] for matching
objects in videos and the term bag of keypoints is introduced by Csurka et al. [2004],
which compute quantized SIFT features using K-means algorithm and employs both a
naive Bayes classifier and support vector machines for classification. Further approaches
in this direction [Grauman and Darrell, 2005; Lazebnik et al., 2006; Zhang et al., 2007]
typically investigate other means to detect keypoints, compute features, or perform
classification. One of the first attempt to apply this idea to unlabeled images is the work
of Grauman and Darrell [2006] which uses a spectral clustering technique to recover
the image grouping in SIFT feature space. Another noticeable unsupervised idea to this
problem is the methods of Sivic et al. [2005, 2008] employing text analysis models to
discover topics from pre-computed visual words and assimilating the discovered topics
to different object categories.

Part-based models. Recognizing an object by finding its constituent parts and measuring their
geometric relationships can be traced back to the early work of Fischler and Elschlager
[1973] introducing pictorial structures, a model where geometric relationships between
parts are represented by spring-like connections. Building upon this idea, further works
investigate other topologies for the geometric relationships between parts such as a
tree structure [Felzenszwalb and Huttenlocher, 2005; Fergus et al., 2005], a directed
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acyclic graph [Bouchard and Triggs, 2005; Carneiro and Lowe, 2006] or a constellation
model [Burl et al., 1998; Fergus et al., 2007]. In particular, the constellation model is at
the root of key approaches designed for unsupervised category recognition like Weber
et al. [2000a,b]; Fergus et al. [2003]. Despite their elegant interpretability, part-based
models are difficult to fit to real-world images, which typically contain a preponderance
of clutter.

Deep methods. Most recent feature-based approaches to image clustering employs deep
learning. This kind of methods typically aims at learning without supervision deep features
that will specifically provide good clustering performances after the application of a standard
unsupervised clustering algorithm (e.g., K-means [MacQueen, 1967]). These methods can be
grouped depending on the framework employed to learn the clustering features.

Autoencoder. One of the most natural solution to learn deep features suited for clustering is to
adapt the classical deep autoencoder model [Hinton and Salakhutdinov, 2006; Ranzato
et al., 2007; Vincent et al., 2008] such that the space of the bottleneck representation is (as
much as possible) discriminative and well-separated. Works in this direction include Xie
et al. [2016]; Dizaji et al. [2017]; Jiang et al. [2017]. A noticeable work related to this
thesis is Kosiorek et al. [2019] which leverages the idea of capsules [Hinton et al., 2011]
to learn equivariant image features, in a similar fashion of equivariant models [Lenc and
Vedaldi, 2015; Tai et al., 2019].

GAN. Several works investigate the idea to adapt the unsupervised learning framework of
GAN to learn meaningful representations that are suited for clustering. One of the first
attempt is InfoGAN [Chen et al., 2016] which augments the traditional input noise vector
with latent variables drawn from structured distributions (e.g., a uniform categorical
distribution) and learns disentangled representations by maximizing the mutual informa-
tion between these latent variables and the observations. Other works in this direction
include [Zhou et al., 2018; Mukherjee et al., 2019].

Contrastive learning. Another line of works proposes to directly inject the desired objective of
learning discriminative features into the loss function to minimize during learning. This
is generally done using the paradigm of contrastive learning, which aims at encouraging
the model to bring features of positive pairs (similar images) closer together, and to
push features of negative pairs (dissimilar images) farther apart. Works in this direction
typically use the triplet loss [Yang et al., 2016] originally introduced by Schroff et al.
[2015a], pseudo classification labels [Chang et al., 2017], a loss based on siamese
networks [Shaham et al., 2018] firstly introduced by [Chopra et al., 2005], or strategies
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maximizing representation similarities between a sample and random transformations of
this sample [Hu et al., 2017; Häusser et al., 2018; Ji et al., 2019], in a flavor similar to
the seminal idea of Dosovitskiy et al. [2014].

2.2.2 Synthesis-based methods

Clustering images by synthesis requires to model object categories in the image synthesis
process. One of the most naive approaches is the classical K-means algorithm, originally
introduced as an iterative process by MacQueen [1967] and later adapted to a gradient-based
optimization by Bottou and Bengio [1995]. In K-means, representatives (or prototypes) for
each category are computed such that they best synthesize the data, and each sample is assigned
to the group of the closest prototype. The notion of closeness involves a distance function
(traditionally, the Euclidean distance) defined in the input space (for images, this corresponds
to the pixel space). Despite its known popularity, K-means dramatically fails when directly
applied to pixels of images. One major reason for such a failure is that computing distances
in pixel space is not robust to common image transformations. For example, the Euclidean
distance between an image and an augmented version translated by a few pixels would likely
not be zero for non-trivial images, which is problematic.

To tackle this issue, a group of approaches aims at aligning images in pixel space using a
relevant family of transformations (such as translations, rotations, or affine transformations)
to make pixel distances at least robust to such transformations. Frey and Jojic [1999, 2002,
2003] are one the first to investigate this direction by formulating their seminal work about
transformation-invariant clustering. More formally, they propose to model image transla-
tions with pixel permutations represented by a discrete latent variable that is incorporated
within an Expectation Maximization (EM) [Dempster et al., 1977] procedure for a mixture
of Gaussians. Their approach is however limited to a finite set of discrete transformations.
Congealing generalized the idea to continuous parametric transformations, and in particular
affine transformations, initially by using entropy minimization [Miller et al., 2000; Learned-
Miller, 2005]. A later version using least square costs [Cox et al., 2008, 2009] demonstrated
the relation of this approach to the classical Lukas-Kanade image alignment algorithm [Lucas
et al., 1981]. In its standard version, congealing tackles the joint alignment of images belonging
to the same object category, but the idea was extended to clustering [Liu et al., 2009; Mattar
et al., 2012; Li et al., 2016], for example using a Bayesian model [Mattar et al., 2012], or in a
spectral clustering framework [Li et al., 2016]. These works typically formulate difficult joint
optimization problems and solve them by alternating between clustering and transformation
optimization for each sample. They are thus limited to relatively small datasets and, to the
best of our knowledge, were never compared to modern deep approaches on large benchmarks.
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Deep learning is recently used to scale the idea of congealing for global alignment of a single
class of images [Annunziata et al., 2019] or time series [Weber et al., 2019]. Both works
build on the idea developed by Jaderberg et al. [2015] introducing spatial transformer networks
(STN), where a spatial transformation is modeled as the differentiable sampling of a source
input using a deformed sampling grid.

In Chapter 3, we take direct inspiration from this line of works and introduce a framework
called deep transformation-invariant clustering. Specifically, we propose a simple modifica-
tion to prototype-based algorithms like K-means which amounts to simultaneously learning
prototypes and image-to-prototype alignments using deep learning. We also build upon spatial
transformer networks [Jaderberg et al., 2015], but go beyond single-class alignment to jointly
perform clustering. Additionally, we extend the idea from traditional geometric transformations
to more generic transformations, like color and morphological variations. We believe our work
is the first to use deep learning to effectively perform clustering in pixel space by explicitly
aligning images. In particular, it allows us to turn a failing K-means algorithm into a state-of-the
art clustering method.

2.3 Object discovery

Object discovery corresponds to the task of locating and identifying objects in a collection of
images without any supervision, and thus relates to the supervised problems of object detection,
semantic segmentation and instance segmentation. When the goal is to precisely recover the
spatial extent of the object as a pixel-accurate image region (also called segmentation, mask or
silhouette), the problem can be referred to as cosegmentation and it typically assumes a simpler
setting where images correspond to a single object of the same category.

2.3.1 Feature-based methods

We first describe classical methods leveraging handcrafted features, then we review more recent
methods based on deep features.

Classical methods. An early approach that separate and identify meaningful regions in
images is the work of Brice and Fennema [1970] which breaks the image into atomic regions of
uniform gray scale then use heuristics to group them. More recent works in this direction take
advantages of handcrafted features, instead of low-level image cues, to compute meaningful
regions. Below, we present two ideas particularly developed in the literature.
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Topic discovery. A first group of methods takes inspiration from text analysis approaches
designed to discover topics in a corpus using the bag-of-words document representation.
Specifically, this group of methods computes bag-of-words image representations, apply
topic discovery approaches to the resulting visual words and treat the discovered topics
as object categories. One of the first attempt that seeded this line of works is Sivic et al.
[2005] which successfully discovers objects in images, by identifying their category
and their approximate location. The follow-up work of Russell et al. [2006] extends the
approach to more precisely identify the object location, by predicting the pixel-accurate
object segmentation. Further works in this direction include Cao and Fei-Fei [2007];
Sivic et al. [2008].

Feature matching. A second group of methods aims at matching features across images to
identify recurrent objects in the image collection. One of the first attempts is the work
of Grauman and Darrell [2006] which represents images as bags of SIFT features,
computes pairwise image similarities by partially matching features, and uses spectral
clustering to compute the image groupings. Within an image group, the approximate
object location is recovered by looking at the matched features. Some works [Rother
et al., 2006; Joulin et al., 2010; Vicente et al., 2011; Rubio et al., 2012; Joulin et al., 2012;
Rubinstein et al., 2013] specifically focus on refining the object location by predicting
its spatial extent, typically assuming the traditional cosegmentation setting of a single
object from the same category. Other works [Faktor and Irani, 2012; Cho et al., 2015;
Vo et al., 2019] instead focus on scaling object discovery to a more general scenario of
real-world image collections representing several object classes. In particular, Cho et al.
[2015] represent part-based region proposals with HOG features and match them across
images using a probabilistic Hough transform.

Deep methods. Most recent approaches use deep features to tackle object discovery, rather
than using generic handcrafted representations. A first line of works aims at incorporating CNN-
based features to improve cosegmentation performances for single object category. An early
example is the work of Quan et al. [2016] which uses both SIFT descriptors and deep features
extracted from an off-the-shelf CNN trained for ImageNet classification. Other examples [Li
et al., 2018, 2019a] try to incorporate the unsupervised learning of the CNN extractor to obtain
deep features more suited for cosegmentation. Another line of works [Shen et al., 2019; Vo
et al., 2020; Siméoni et al., 2021] instead focuses on leveraging deep features to scale object
discovery to more complex real-world setups, where multiple objects from different classes are
represented within the same image.
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2.3.2 Synthesis-based methods

Discovering objects by synthesis requires to design an image model that explicitly integrates
multiple elements during the image formation. A classical image model is to build an image by
alpha compositing several images with transparency (or layers), each representing different
region of the final image. We first review works related to layered image modeling, which are
typically limited to simpler settings like targeting foreground-background decomposition or
assuming the access to image sequences. We then discuss recent deep learning based works
focusing on decomposing images into an unknown number of objects, an unsupervised task
often referred to as object-based image decomposition or scene decomposition.

Layered image modeling. The idea of building images by compositing successive layers can
already be found in the early work of Matheron [1968] introducing the dead leaves model. In
this work, an image is assembled as a set of templates partially occluding one another and laid
down in layers. Originally meant for material statistics analysis, this work is extended by Lee
et al. [2001] to a scale-invariant representation of natural images. Jojic and Frey [2001] propose
to decompose video sequences into layers undergoing spatial modifications (called flexible
sprites) and demonstrate applications to video editing. Leveraging this idea, Winn and Jojic
[2005] introduce LOCUS, a method designed for learning object models from unlabeled images
and evaluated for foreground segmentation. Recently, approaches like Yang et al. [2017]; Lin
et al. [2018]; Singh et al. [2019]; Chen et al. [2019a]; Arandjelović and Zisserman [2019] use
GANs to learn layered image compositions, yet they are limited to a foreground-background
decomposition. A noticeable work related to ours is Reddy et al. [2020], which proposes to
optimize a single image decomposition into a set of pattern elements that are assumed to be
known.

Scene decomposition. A recent trend of works proposes to leverage deep learning to learn
image decomposition into objects in an unsupervised setting. A first line of works tackles
the problem from a spatial mixture model perspective where latent variables encoding pixel
assignment to groups are estimated. The seminal work from Greff et al. [2016a,b, 2017]
introduces spatial mixtures, models complex pixel dependencies with neural networks and
uses an iterative refinement to estimate the mixture parameters. MONet [Burgess et al.,
2019] jointly learns a recurrent segmentation network and a VAE to predict component mask
and appearance. IODINE [Greff et al., 2019] instead uses iterative variational inference
to refine object representations jointly decoded with a spatial broadcast decoder [Watters
et al., 2019] as mixture assignments and components. Combining ideas from MONet and
IODINE, GENESIS [Engelcke et al., 2020] predicts, with an autoregressive prior, object
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mask representations used to autoencode masked regions of the input. Leveraging an iterative
attention mechanism [Vaswani et al., 2017], Slot Attention [Locatello et al., 2020] produces
object-centric representations decoded in a fashion similar to IODINE. Other related methods
are [van Steenkiste et al., 2018; von Kügelgen et al., 2020; Yang et al., 2020; Smith et al.,
2023]. Another set of approaches builds upon the work of Eslami et al. [2016] who propose a
VAE-based model using spatial attention [Jaderberg et al., 2015] to iteratively specify regions
to reconstruct. This notably includes SQAIR [Kosiorek et al., 2018], SPAIR [Crawford and
Pineau, 2019] and the more recent SPACE [Lin et al., 2020b]. To the best of our knowledge,
none of these methods explicitly model object categories, nor demonstrate applicability to real
images.

In Chapter 4, we present a scene decomposition approach which is orthogonal to this line
of works generating layers implicitly with neural networks. It instead takes inspiration from
traditional layered image models like Matheron [1968]; Jojic and Frey [2001] and represents
layers as the explicit transformation of learnable prototypical images with transparency called
sprites. Specifically, we jointly learn a small dictionary of sprites and neural networks pre-
dicting their transformations to explain the images, in a fashion similar to the idea developed
in Chapter 3. In contrast to prior works, our sprite modeling allows us to not only identify
different object types, each represented by a different sprite, but also to demonstrate results on
Internet images. Note that this idea is also explored by MarioNette [Smirnov et al., 2021], a
concurrent approach modeling sprites with latent features, and further works like Reddy et al.
[2022] build upon such sprite-based image modeling.

2.4 Single-view reconstruction

Single-view reconstruction (SVR) is a long standing computer vision problem that aims at
computing the 3D model of a scene depicted by a single image. We first review feature-
based approaches, then we discuss analysis-by-synthesis methods, which typically leverage 3D
reconstruction models based on deep learning.

2.4.1 Feature-based methods

Classical approaches to SVR are typically bottom-up; they compute low-level image features
that are used to predict a 3D model explaining such features. An early example is the very first
computer vision thesis of Roberts [1963] proposing Blocks World. In this work, polyhedral 3D
blocks are computed by detecting and matching the edges of an image depicting a simple scene
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made of textureless polyhedral shapes. Criminisi et al. [2000] propose to detect vanishing points
and use some additional user input to infer the 3D geometry. Hoiem et al. [2005] instead present
a fully automatic method for creating a 3D model from a single outdoor photograph. The
authors start by computing superpixels that are grouped into regions labeled as ground, vertical
or sky regions. Then, region boundaries are used to infer 3D lines along which the image is
folded into a “pop-up”. The work of Delage et al. [2006] also assumes a 3D model made of a
flat floor and vertical walls but proposes a system designed for indoor images. Other works
goes beyond the assumption of a “floor-wall” 3D geometry. Saxena et al. [2009] represent 3D
scenes with many small planar surfaces recovered from superpixels, while Gupta et al. [2010];
Lee et al. [2010] recover 3D reconstruction by computing 3D cuboids that best match surface
orientation predictions output by the off-the-shelf system of Hoiem et al. [2005, 2007].

2.4.2 Synthesis-based methods

Recent SVR works typically leverage deep learning to learn the priors necessary to hallucinate
the 3D parts hidden in the single-view image, as illustrated by the 3D supervised approaches
of Choy et al. [2016]; Wang et al. [2018]; Groueix et al. [2018]; Mescheder et al. [2019]; Xu
et al. [2019]. A first group of deep synthesis-based methods proposes to learn deep SVR models
through multi-view supervision, a learning setting that does not correspond to most image
collections. Another group of methods instead focuses on removing the need for supervision,
to learn 3D reconstructions from raw image collections. We first review approaches related to
these two groups, then we describe in more details works involving the differentiable rendering
of meshes.

Multi-view supervision. Approaches based on multi-view supervision generally work as
follows: given multiple views of the same object during training, one view is used to predict
a 3D object and the other views are used to compare the 3D object renderings and update
the model parameters. This type of approaches also assumes the access for each image to
the object silhouette, i.e. an image-sized binary mask representing the object spatial extent.
The first methods using multiple views and silhouettes initially require camera poses and are
developed for diverse 3D shape representations: Yan et al. [2016]; Tulsiani et al. [2017b] opt for
voxels, Kato et al. [2018]; Liu et al. [2019]; Chen et al. [2019b] learn meshes, and [Niemeyer
et al., 2020; Sitzmann et al., 2019, 2021] leverage implicit neural representations. Works
like Insafutdinov and Dosovitskiy [2018]; Tulsiani et al. [2018] then introduce techniques to
remove the assumption of known camera poses. Except for Zhang et al. [2021b] who leverage
GAN-generated images from the model of Karras et al. [2019], these works are typically limited
to synthetic image collections.



2.5. MULTI-VIEW 3D DECOMPOSITION 29

Towards unsupervision. There is a clear trend to remove supervision from deep SVR
pipeline to learn 3D from raw 2D images. This is very challenging and works in this direction
typically focus on learning 3D from images of a single object category. Early works [Vicente
et al., 2014; Kar et al., 2015; Tulsiani et al., 2017b] estimate camera poses with keypoints
and minimize the silhouette reprojection error. The ability to predict textures is first incorpo-
rated by CMR [Kanazawa et al., 2018] which, in addition to keypoints and silhouettes, uses
symmetry priors. Recent works [Lin et al., 2020a; Duggal and Pathak, 2022] replace the
mesh representation of CMR with implicit functions that do not require symmetry priors, yet
the predicted texture quality is strongly deteriorated. Henderson et al. [2020] improve upon
CMR and develop a framework for images with camera annotations that does not rely on
silhouettes. Two works managed to further avoid the need for camera estimates but at the cost
of additional hypothesis: Henderson and Ferrari [2019] show results with textureless synthetic
objects, Wu et al. [2020] model 2.5D objects like faces with limited background and viewpoint
variation. Finally, recent works only require object silhouettes but they also make additional
assumptions: Goel et al. [2020]; Tulsiani et al. [2020] use known template shapes, Li et al.
[2020] assume access to an off-the-shelf system predicting part semantics, and Wu et al. [2021]
target solids of revolution. Other related works [Gadelha et al., 2017; Kato and Harada, 2019;
Henzler et al., 2019; Pavllo et al., 2020; Ye et al., 2021; Hu et al., 2021] leverage in addition
generative adversarial techniques to improve the learning process.

In Chapter 5, we present an unsupervised SVR approach that does not use camera estimates,
keypoints, silhouettes, nor strong dataset-specific assumptions, which correspond to a form of
manual supervision restricting the application to specific image collections. In addition, we
demonstrate results for both diverse shapes and real images. To the best of our knowledge, we
present the first generic SVR system learned from raw image collections.

2.5 Multi-view 3D decomposition

Decomposing a 3D scene represented by multiple view images is a task we study in Chapter 6
and that has rarely been formalized. Specifically, given a set of images representing multiple
views of a scene taken from known camera calibrations and poses, the goal is to decompose
the scene into 3D geometric primitive shapes (like cuboids or cylinders) in such a that they
reconstruct well the 3D scene geometry. This type of input is often shorten as calibrated or
posed multi-view images and cameras are typically automatically computed from the multi-view
images by a structure-from-motion algorithm. Such a multi-view 3D decomposition task can
be seen as a primitive-based approach to the classical multi-view stereo problem, and it is
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also related to prior approaches computing 3D decompositions from 3D point clouds or image
representations like depth maps. We first review approaches to multi-view stereo and we then
discuss works related to the general 3D decomposition problem.

2.5.1 Multi-view stereo

Multi-view stereo (MVS) refers to a 3D reconstruction problem where the input is a set of
images representing multiple views of a scene, along with their camera calibration and pose.
We first review approaches based on features, then discuss synthesis-based approaches.

Feature-based methods. We briefly present recent MVS works that perform 3D reconstruc-
tion using features. We refer the reader to Hartley and Zisserman [2003]; Furukawa and
Hernández [2015] for an exhaustive review of classical MVS methods.

Feature-based MVS approaches typically rely on several processing steps to extract the
final geometry from the images. Most recent methods [Zheng et al., 2014; Galliani et al., 2015;
Yao et al., 2018, 2019; Zhang, 2020; Gu et al., 2020; Sinha et al., 2020], including the popular
COLMAP developed by Schönberger et al. [2016], first estimate depth maps for each image
through feature matching [Zheng et al., 2014; Schönberger et al., 2016] or neural network
predictions [Yao et al., 2018, 2019; Zhang, 2020; Gu et al., 2020; Sinha et al., 2020]), then apply
a depth fusion step to generate a textured point cloud. Finally, a mesh can be obtained with a
meshing algorithm like Kazhdan and Hoppe [2013]; Labatut et al. [2007]. Other feature-based
approaches directly rely on point clouds [Furukawa and Ponce, 2007; Labatut et al., 2007] or
voxel grids [Ji et al., 2017; Murez et al., 2020]. Note that works like Ji et al. [2017]; Murez et al.
[2020] leverage neural networks to directly regress the geometry, but they rely on a training
phase requiring 3D supervision before being applied to unknown sets of multi-view images.
Computing 3D reconstruction through multiple steps involves careful tuning of each stage, thus
increasing the pipeline complexity. An important recent effort to MVS instead aims at directly
learning 3D reconstruction by synthesizing the multi-view images, which we discuss next.

Synthesis-based methods. MVS can also be formulated as a global optimization problem,
where a 3D scene representation is optimized by rendering the scene and maximizing the
photoconsistency across the different views. An early attempt is the voxel coloring algorithm
of Seitz and Dyer [1997] labeling voxels that are sufficiently photoconsistent as parts of the
object. Kutulakos and Seitz [1999] generalize voxel coloring to space carving, where the 3D
voxel grid is carved away along different camera axes by using silhouettes. Other early works
like Faugeras and Keriven [1998]; Pons et al. [2007]; Kolev et al. [2009]; Cremers and Kolev
[2011] investigate continuous scene representations to improve the reconstruction quality.
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Reconstructing a 3D scene by synthesizing images has recently gain attention through
advances in differentiable rendering, whose development has been eased thanks to deep
gradient-based softwares. Specifically, the general approach to recent 3D reconstruction by
synthesis is to design a 3D scene model along with a differentiable rendering process, and
to learn the 3D model by rendering it from different views and maximizing the photometric
consistency across the views through gradient descent. A first group of methods uses neural
networks to implicitly represent the 3D scene, in the form of occupancy fields [Niemeyer
et al., 2020], signed distance functions [Yariv et al., 2020] or radiance fields, as introduced
in NeRF [Mildenhall et al., 2020]. Several works incorporate surface constraints in neural
volumetric rendering to further improve the scene geometry [Oechsle et al., 2021; Yariv et al.,
2021; Wang et al., 2021; Darmon et al., 2022; Fu et al., 2022], with a quality approaching
that of traditional MVS methods. Another group of methods [Gao et al., 2020; Zhang et al.,
2021a; Goel et al., 2022; Munkberg et al., 2022] instead propose to leverage recent advances in
mesh-based differentiable rendering [Liu et al., 2019; Ravi et al., 2020] to explicitly optimize
textured meshes. Compared to implicit 3D representations, meshes are highly interpretable and
are straightforward to use in computer graphic pipelines [Munkberg et al., 2022]. However, all
the above approaches represent the scene as a single mesh, making it ill-suited for manipulation
and editing.

In Chapter 6, we introduce an approach to MVS that reconstruct a scene using textured
primitive meshes. Such a primitive-based representation is interpretable and actionable; it
allows us to perform physics-based simulations and scene editing in a seamless fashion.
The concurrent work PartNeRF [Tertikas et al., 2023] proposes to introduce parts in NeRFs.
However, only synthetic scenes with a single object are studied and the discovered parts mostly
correspond to regions in the 3D space rather than interpretable geometric primitives.

2.5.2 3D decomposition

The goal of understanding a scene by decomposing it into a set of geometric primitives can
be traced back to the very fist computer vision thesis by Roberts [1963] on Blocks World
where polyhedral 3D blocks are used as primitives. In the 1970s, Binford [1971] proposes
the use of Generalized Cylinders as general primitives, later refined by Biederman [1987]
into the recognition-by-components theory. But applying these ideas to real-world image
data has proved rather difficult, and most approaches in this direction typically propose to
directly fit primitives to 3D representations or convenient image features. We next discuss such
approaches.
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3D fitting. A large family of methods does not consider images at all, instead focusing on
finding primitives in 3D data. Building upon the classical idea of RANSAC [Fischler and
Bolles, 1981], works like [Bolles and Fischler, 1981; Chaperon and Goulette, 2001; Schnabel
et al., 2007, 2009; Li et al., 2011; Ramamonjisoa et al., 2022] accurately extract various
primitive shapes (e.g., planes, spheres and cylinders for Schnabel et al. [2007, 2009]; Li et al.
[2011]) from a point cloud. In particular, MonteBoxFinder [Ramamonjisoa et al., 2022]
is a recent RANSAC-based system that robustly extracts cuboids from noisy point clouds
by selecting the best proposals through Monte Carlo Tree Search. To avoid the need for
RANSAC hyperparameter tuning while retaining robustness, Liu et al. [2022] introduce a
probabilistic framework dubbed EMS that recovers superquadrics [Barr, 1981]. Other methods
instead leverage neural learning advances to robustly predict primitive decomposition from
a collection of shapes (e.g., ShapeNet [Chang et al., 2015]), in the form of cuboids [Tulsiani
et al., 2017a], superquadrics [Paschalidou et al., 2019, 2020; Wu et al., 2022], shapes from a
small dictionary [Li et al., 2019b; Le et al., 2021], learnable prototypical shapes [Deprelle et al.,
2019; Loiseau et al., 2023] or parts generated by neural networks [Paschalidou et al., 2021;
Prabhudesai et al., 2023]. However, they are typically limited to shapes of known categories
and require perfect 3D data. More generally, the decomposition results of all 3D-based methods
highly depend on the quality of the 3D input, which is always noisy and incomplete for real
scenes. For a survey of classical 3D decomposition methods into geometric primitives, we refer
the reader to Kaiser et al. [2019].

Image features fitting. More recently, there has been a renewed effort to fit 3D primitives to
various image representations, such as depth maps, segmentation predictions or low-level image
features. Depth-based approaches [Jiang and Xiao, 2013; Fouhey et al., 2013; Lin et al., 2013;
Geiger and Wang, 2015; Kluger et al., 2021] naturally associate a 3D point cloud to each image
which is then used for primitive fitting. However, the resulting point cloud is highly incomplete,
ambiguous and sometimes inaccurately predicted, thus limiting the decomposition quality.
Building upon the single-image scene layout estimation from Hoiem et al. [2005, 2007], works
like Gupta et al. [2010]; Lee et al. [2010] compute cuboids that best match the predicted surface
orientations. Finally, Façade, the classic image-based rendering work developed by Debevec
et al. [1996], leverages user annotations across multiple images with known camera viewpoints
to render a scene with textured 3D primitives.

In Chapter 6, we present a method that does not rely on 3D, depth, segmentation, low-level
features, or user annotations to compute the 3D decomposition. Instead, taking inspiration
from Façade [Debevec et al., 1996] and recent multi-view modeling advances [Mildenhall



2.5. MULTI-VIEW 3D DECOMPOSITION 33

et al., 2020], we only require calibrated views of the scene and we directly optimize textured
primitives through photometric consistency in an end-to-end fashion. That is, we solve the 3D
decomposition and multi-view stereo problems simultaneously.





Chapter 3

Deep Transformation-Invariant Clustering

(a) Classical versus Deep Transformation-Invariant clustering

(b) Deep transformation module Tfk

(c) Prototypes learned from unfiltered Instagram images associated to different hashtags

Figure 3.1: Deep Transformation-Invariant Clustering. (a) Given a sample xi and prototypes c1 and
c2, standard clustering such as K-means assigns the sample to the closest prototype. Our DTI clustering
first aligns prototypes to the sample using a family of parametric transformations - here rotations -
then picks the prototype whose alignment yields the smallest distance. (b) We predict alignment with
deep learning. Given an image xi, each parameter predictor fk predicts parameters for a sequence of
transformations - here affine T

aff
ωaff

, morphological T
mor

ωmor
, and thin plate spline T

tps
ωtps

- to align prototype
ck to xi. (c) We apply our method with 40 clusters on large Instagram image sets (15k each).
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3.1 Introduction

Gathering collections of images on a topic of interest is getting easier every day: simple tools
can aggregate data from social media, web search, or specialized websites and filter it using
hashtags, GPS coordinates, or semantic labels. However, identifying visual trends in such image
collections remains difficult and usually involves manually organizing images or designing
an ad hoc algorithm. Our goal in this chapter is to design a clustering method which can be
applied to such image collections, output a visual representation for each cluster and show how
it relates to every associated image.

Directly comparing image pixels to decide if they belong to the same cluster leads to
poor results because they are strongly impacted by factors irrelevant to clustering, such as
exact viewpoint or lighting. Approaches to obtain clusters invariant to these transformations
can be broadly classified into two groups. A first set of methods extracts invariant features
and performs clustering in feature space. The features can be manually designed, but most
state-of-the-art methods learn them directly from data. This is challenging because images are
high-dimensional and learning relevant invariances thus requires huge amounts of data. For
this reason, while recent approaches perform well on simple datasets like MNIST, they still
struggle with real images. Another limitation of these approaches is that learned features are
hard to interpret and visualize, making clustering results difficult to analyze. A second set of
approaches, following the seminal work of Frey and Jojic [1999, 2002, 2003] on transformation-
invariant clustering, uses explicit transformation models to align images before comparing
them. These approaches have several potential advantages: (i) they enable direct control of
the invariances to consider; (ii) because they do not need to discover invariances, they are
potentially less data-hungry; (iii) since images are explicitly aligned, clustering process and
results can easily be visualized. However, transformation-invariant approaches require solving
a difficult joint optimization problem. In practice, they are thus often limited to small datasets
and simple transformations, such as affine transformations, and to the best of our knowledge
they have never been evaluated on large standard image clustering datasets.

In this chapter, we propose a deep transformation-invariant (DTI) framework that enables
to perform transformation-invariant clustering at scale and uses complex transformations. Our
main insight is to jointly learn deep alignment and clustering parameters with a single loss,
relying on the gradient-based adaptations of K-means [MacQueen, 1967] and GMM optimiza-
tion [Dempster et al., 1977]. Not only is predicting transformations more computationally
efficient than optimizing them, but it enables us to use complex color, thin plate spline and
morphological transformations without any specific regularization. Because it is pixel-based,
our deep transformation-invariant clustering is also easy to interpret: cluster centers and image
alignments can be visualized to understand assignments. Despite its apparent simplicity, we
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demonstrate that our DTI clustering framework leads to results on par with the most recent
feature learning approaches on standard benchmarks. We also show it is capable of discovering
meaningful modes in real photograph collections, which we see as an important step to bridge
the gap between theoretically well-grounded clustering approaches and semi-automatic tools re-
lying on hand-designed features for exploring image collections, such as AverageExplorer [Zhu
et al., 2014] or ShadowDraw [Lee et al., 2011].

We first present our DTI framework in Section 3.2 (Figure 3.1a).Then, Section 3.3 introduces
our deep transformation modules and architecture (Figure 3.1b) and discuss training details.
Finally, Section 3.4 presents and analyzes our results (Figure 3.1c).

Contributions. In this chapter we present:
• a deep transformation-invariant clustering approach that jointly learns to cluster and align

images,
• a deep image transformation module to learn spatial alignment, color modifications and

for the first time morphological transformations,
• an experimental evaluation showing that our approach is competitive on standard image

clustering benchmarks, improving over state-of-the-art on Fashion-MNIST and SVHN,
and provides highly interpretable qualitative results even on challenging web image
collections.

Code, data, models as well as more visual results are available on our project webpage:
www.tmonnier.com/DTIClustering.

3.2 Approach

In this section, we first discuss a generic formulation of our deep transformation-invariant
clustering approach, then derive two algorithms based on K-means [MacQueen, 1967] and
Gaussian mixture model [Dempster et al., 1977].

Notations. In all the rest of the paper, we use the notation a1:n to refer to the set {a1, . . . , an}.

3.2.1 DTI framework

Contrary to most recent image clustering methods which rely on feature learning, we propose
to perform clustering in pixel space by making the clustering invariant to a family of transfor-
mations. We consider N image samples x1:N and aim at grouping them in K clusters using a
prototype method. More specifically, each cluster k is defined by a prototype ck, which can

https://www.tmonnier.com/DTIClustering
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also be seen as an image, and prototypes are optimized to minimize a loss L which typically
evaluates how well they represent the samples. We further assume that L can be written as a
sum of a loss l computed over each sample:

L(c1:K) =
N∑

i=1
l(xi, {c1, . . . , cK}). (3.1)

Once the problem is solved, each sample xi will be associated to the closest prototype.

Our key assumption is that in addition to the data, we have access to a group of parametric
transformations {Tω, ω ↑ B} to which we want to make the clustering invariant. For example,
one can consider ω ↑ R6 and Tω the 2D affine transformation parametrized by ω. Other
transformations are discussed in Section 3.3.1. Instead of finding clusters by minimizing the
loss of Equation (3.1), one can minimize the following transformation-invariant loss:

LTI(c1:K) =
N∑

i=1
min
ω1:K

l(xi, {Tω1(c1), . . . , TωK (cK)}). (3.2)

In this equation, the minimum over ω1:K is taken for each sample independently. This loss is
invariant to transformations of the prototypes (see proof in Appendix A.2). Also note there is
not a single optimum since the loss is the same if any prototype ck is replaced by Tω(ck) for
any ω ↑ B. If necessary, for example for visualization purposes, this ambiguity can easily be
resolved by adding a small regularization on the transformations. The optimization problem
associated to LTI is of course difficult. A natural approach, which we use as baseline (noted
TI), is to alternatively minimize over transformations and clustering parameters. We show that
performing such optimization using a gradient descent can already lead to improved results
over standard clustering but is computationally expensive.

We experimentally show it is faster and actually better to instead learn K (deep) predic-
tors f1:K for each prototype, which aim at associating to each sample xi the transformation
parameters f1:K(xi) minimizing the loss, i.e. to minimize the following loss:

LDTI(c1:K , f1:K) =
N∑

i=1
l(xi, {Tf1(xi)(c1), . . . , TfK(xi)(cK)}), (3.3)

where predictors f1:K are now shared for all samples. We found that using deep parameters
predictors not only enables more efficient training but also leads to better clustering results
especially with more complex transformations. Indeed, the structure and optimization of the
predictors naturally regularize the parameters for each sample, without requiring any specific
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Algorithm 1: Deep Transformation-Invariant Gaussian Mixture Model
Input: data X, number of clusters K, transformation T

Output: cluster assignations, Gaussian parameters µ1:K , !1:K , deep predictors f1:K
Initialization: µ1:K with random samples, !1:K = 0.5, ε1:K = 1 and

↓k, ↓x, Tfk(x) = Id
1 while not converged do
2 i. sample a batch of data points x1:N
3 ii. compute mixing probabilities: ϑ1:K = softmax(ε1:K)
4 iii. compute per-sample Gaussian transformed parameters:

↓k, ↓i, µ̃ki = Tfk(xi)(µk) and !̃ki = T
↑

fk(xi)(!k) + diag(ϖ2
min)

5 iv. compute responsibilities: ↓k, ↓i, ϱki = εkG(xi ;µ̃ki,!̃ki)∑
j

εjG(xi ;µ̃ji,!̃ji)
(E-step)

6 v. minimize expected negative log-likelihood w.r.t to {µ1:K , !1:K , ε1:K , f1:K}:

E[LDTI GMM] = ↔

N∑

i=1

K∑

k=1
ϱki

(
log

(
G(xi ; µ̃ki, !̃ki)

)
+ log(ϑk)

)
(M-step)

7 end

regularization loss, especially in the case of high numbers N of samples and transformation
parameters.

In the next section we present concrete losses and algorithms. We then describe differen-
tiable modules for relevant transformations and discuss parameter predictor architecture as well
as training in Section 3.3.

3.2.2 Application to K-means and GMM

K-means. The goal of K-means algorithm [MacQueen, 1967] is to find a set of prototypes
c1:K such that the average Euclidean distance between each sample and the closest prototype is
minimized. Following the reasoning of Section 3.2.1, the loss optimized in K-means can be
transformed into a transformation-invariant loss:

LDTI K-means(c1:K , f1:K) =
N∑

i=1
min

k
↗xi ↔ Tfk(xi)(ck)↗2. (3.4)

Following batch gradient-based trainings [Bottou and Bengio, 1995] of K-means, we can then
simply jointly minimize LDTI K-means over prototypes c1:K and deep transformation parameter
predictors f1:K using a batch gradient descent algorithm. In practice, we initialize prototypes
c1:K with random samples and predictors f1:K such that ↓k, ↓x, Tfk(x) = Id.
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Gaussian mixture model. We now consider that data are observations of a mixture of K

multivariate normal random variables X1:K , i.e. X = ∑
k ςk,”Xk where ς is the Kronecker

function and ” ↑ {1, . . . , K} is a random variable defined by P (” = k) = ϑk, with ↓k, ϑk >

0 and
∑

k ϑk = 1. We write µk and !k the mean and covariance of Xk and G( . ; µk, !k)
associated probability density function. The transformation-invariant negative log-likelihood
can then be written:

LDTI GMM(µ1:K , !1:K , ϑ1:K , f1:K) = ↔

N∑

i=1
log

( K∑

k=1
ϑkG

(
xi ; Tfk(xi)(µk), T

↑
fk(xi)(!k)

))
, (3.5)

where T
↑ is slightly modified version of T . Indeed, T may include transformations that one can

apply to the covariance, such as spatial transformations, and other that would not make sense,
such as additive color transformations. We jointly minimize LDTI GMM over Gaussian parameters,
mixing probabilities, and deep transformation parameters f1:K using a batch gradient-based
EM procedure similar to [Hosseini and Sra, 2015; Greff et al., 2017; Gepperth and Pfülb, 2019]
and detailed in Algorithm 1. In practice, we assume that pixels are independent resulting in
diagonal covariance matrices.

In such gradient-based procedures, two constraints have to be enforced, namely the posi-
tivity and normalization of mixing probabilities ϑk and the non-negativeness of the diagonal
covariance terms. For the mixing probabilities constraints, we adopt the approach used in [Hos-
seini and Sra, 2015] and [Gepperth and Pfülb, 2019] which optimize mixing parameters εk used
to compute the probabilities ϑk using a softmax instead of directly optimizing ϑk, which we
write ϑ1:K = softmax(ε1:K). For the variance non-negativeness, we introduce a fixed minimal
variance value ϖ2

min which is added to the variances when evaluating the probability density
function. This approach is different from the one in [Gepperth and Pfülb, 2019] which instead
use clipping, because we found training with clipped values was harder. In practice, we take
ϖmin = 0.25.

3.3 Learning image transformations

3.3.1 Architecture and transformation modules

We consider a set of prototypes c1:K we would like to transform to match a given sample
x. To do so, we propose to learn for each prototype ck, a separate deep predictor which
predicts transformation parameters ω. We propose to model the family of transformations
Tω as a sequence of M parametric transformations such that, writing ω = (ω1, . . . , ωM),
Tω = T

M
ωM ↘ . . .↘T

1
ω1 . In the following, we describe the architecture of transformation parameter
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predictors f1:K , as well as each family of parametric transformation modules we use. Figure 3.1b
shows our learned transformation process on a MNIST example.

Parameters prediction network. For all experiments, we use the same parameter predictor
network architecture composed of a shared ResNet [He et al., 2016] backbone truncated after
the global average pooling, followed by K → M Multi-Layer Perceptrons (MLPs), one for each
prototype and each transformation module. For the ResNet backbone, we use ResNet-20 for
images smaller than 64 → 64 and ResNet-18 otherwise. Each MLP has the same architecture,
with two hidden layers of 128 units.

Spatial transformer module. To model spatial transformations of the prototypes, we follow
the spatial transformers developed by Jaderberg et al. [2015]. The key idea is to model spatial
transformations as a differentiable image sampling of the input using a deformed sampling grid.
We use affine T

aff
ω , projective T

proj
ω and thin plate spline T

tps
ω [Bookstein, 1989] transformations

which respectively correspond to 6, 8 and 16 (a 4x4 grid of control points) parameters.

Color transformation module. We model color transformation with a channel-wise diagonal
affine transformation on the full image, which we write T

col
ω . It has 2 parameters for greyscale

images and 6 parameters for colored images. We first used a full affine transformation with 12
parameters, however the network was able to hide several patterns in the different color channels
of a single prototype (Appendix A.3). Note that a similar transformation was theoretically
introduced in capsules [Kosiorek et al., 2019], but with the different goal of obtaining a color-
invariant feature representation. Deep feature-based approaches often handle color images
with a pre-processing step such as Sobel filtering [Caron et al., 2018; Ji et al., 2019; Kosiorek
et al., 2019]. We believe the way we align colors of the prototypes to obtain color invariance in
pixel space is novel, and it enables us to directly work with colored images without using any
pre-processing or specific invariant features.

Morphological transformation module. We introduce a new transformation module to learn
morphological operations [Haralick et al., 1987] such as dilation and erosion. We consider
a greyscale image x ↑ IRD of size U → V = D, we write x[u, v] the value of the pixel
(u, v) for u ↑ {1, . . . , U} and v ↑ {1, . . . , V }. Given a 2D region A, the dilation of x by A,
DA(x) ↑ IRD, is defined by DA(x)[u, v] = max(u→,v→)↓A x[u + u↔, v + v↔] and its erosion by A,
EA(x) ↑ IRD, is defined by EA(x)[u, v] = min(u→,v→)↓A x[u + u↔, v + v↔]. Directly learning the
region A which parametrizes these transformations is challenging, we thus propose to learn
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parameters (φ, a) for the following soft version of these transformations:

T
mor

(ϑ,a)(x)[u, v] =
∑

(u→,v→)↓W x[u + u↔, v + v↔] · a[u + u↔, v + v↔] · eϑx[u+u→,v+v→]
∑

(u→,v→)↓W a[u + u↔, v + v↔] · eϑx[u+u→,v+v→] , (3.6)

where W is a fixed set of 2D positions, φ is a softmax (positive values) or softmin (negative
values) parameter and a is a set of parameters with values between 0 and 1 defined for every
position (u↔, v↔) ↑ W . Parameters a can be interpreted as an image, or as a soft version of
the region A used for morphological operations. Note that if a[u↔, v↔] = 1{(u→,v→)↓A}, when
φ ≃ +⇐ (resp. ↔⇐), it successfully emulates DA (resp. EA). In practice, we use a grid
of integer positions around the origin of size 7 → 7 for W . Note that since morphological
transformations do not form a group, transformation-invariant denomination is slightly abusive.

3.3.2 Training

We found that two key elements were critical to obtain good results: empty cluster reassignment
and curriculum learning. We then discuss further implementation details and computational
cost.

Empty cluster reassignment. Similar to [Caron et al., 2018], we adopt an empty cluster
reassignment strategy during our clustering optimization. We reinitialize both prototype and
deep predictor of "tiny" clusters using the parameters of the largest cluster with a small added
noise. In practice, the size of balanced clusters being N/K, we define "tiny" as less than 20%
of N/K.

Curriculum learning. Learning to predict transformations is a hard task, especially when the
number of parameters is high. To ease learning, we thus adopt a curriculum learning strategy by
gradually adding more complex transformation modules to the training. Given a target sequence
of transformations to learn, we first train our model without any transformation - or equivalently
with an identity module - then iteratively add subsequent modules once convergence has been
reached. We found this is especially important when modeling local deformations with com-
plex transformations with many parameters, such as TPS and morphological transformations.
Intuitively, prototypes should first be coarsely aligned before attempting to refine the alignment
with more complex transformations.

Implementation details. Both clustering parameters and parameter prediction networks are
learned jointly and end-to-end using Adam optimizer [Kingma and Ba, 2015] with a 10↗6
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MNIST MNIST-test USPS F-MNIST FRGC SVHN

Method Runs Eval ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

Clustering on a learned feature
DEC [Xie et al., 2016] 9 max 86.3 83.4 85.6 83.0 76.2 76.7 51.8 54.6 37.8 50.5 -
InfoGAN [Chen et al., 2016] 5 max 89.0 86.0 - - - - 61.0 59.0 - - -
VaDE [Jiang et al., 2017] 10 max 94.5 87.6 - - 56.6 51.2 57.8 63.0 - - -
ClusterGAN [Mukherjee et al., 2019] 5 max 95.0 89.0 - - - - 63.0 64.0 - - -
JULE [Yang et al., 2016] 3 avg 96.4 91.3 96.1 91.5 95.0 91.3 56.3 60.8 46.1 57.4 -
DEPICT [Dizaji et al., 2017] 5 avg 96.5 91.7 96.3 91.5 96.4 92.7 39.2 39.2 47.0 61.0 -
DSCDAN [Yang et al., 2019] 10 avg 97.8 94.1 98.0 94.6 86.9 85.7 66.2 64.5 - - -

Clustering on a learned feature with data augmentation and/or ad hoc data representation
SpectralNet [Shaham et al., 2018] 5 avg 97.1§ 92.4§ - - - - - - - - -
IMSAT [Hu et al., 2017] 12 avg 98.4↭ - - - - - - - - - 57.3↭†

ADC [Häusser et al., 2018] 20 avg 98.7↭ - - - - - - - 43.7↭ - 38.6↭
SCAE [Kosiorek et al., 2019] 5 avg 98.7↭ - - - - - - - - - 55.3‡

IIC [Ji et al., 2019] 5 avg 98.4↭ - - - - - - - - - -
5 minLoss 99.2↭ - - - - - - - - - -

Clustering on pixel values
K-means [MacQueen, 1967] 10 avg 54.8 50.2 55.9 51.2 65.3 61.2 54.1 51.4 22.7 26.5 12.2
GMM [Dempster et al., 1977] 10 avg 54.2 51.7 55.6 54.7 66.0 60.9 49.7 51.2 24.2 27.9 11.6
DTI K-means 10 avg 97.3 94.0 96.6 94.6 86.4 88.2 61.2 63.7 39.6 48.7 36.4 / 44.5ω

10 minLoss 97.2 93.8 98.0 95.3 89.8 89.5 57.4 64.1 41.1 49.7 39.6 / 62.6ω

DTI GMM 10 avg 95.9 93.2 97.8 94.7 84.5 87.2 59.6 62.2 40.1 48.9 36.7 / 57.4ω

10 minLoss 97.1 93.7 98.0 95.1 87.3 89.0 68.2 66.3 41.6 51.1 39.5 / 63.3ω

Table 3.1: Comparisons. We report ACC and NMI in % on standard clustering benchmarks. Symbols
mark methods that use data augmentation (↭) and manually selected features as input (§ for pretrained
features from best VaDE run, † for GIST features, ‡ for Sobel filters) and are thus not directly comparable.
For SVHN, we also report our results with our Gaussian weighted loss (ω). Eval column refers to the
aggregate used: best run (max), average (avg) or run with minimal loss (minLoss).

weight decay on the neural network parameters. We sequentially add transformation modules
at a constant learning rate of 0.001 then divide the learning rate by 10 after convergence -
corresponding to different numbers of epochs depending on the dataset characteristics - and
train for a few more epochs with the smaller learning rate. We use a batch size of 64 for real
photograph collections and 128 otherwise.

Computational cost. Training DTI K-means or DTI GMM on MNIST takes approximately
50 minutes on a single Nvidia GeForce RTX 2080 Ti GPU and full dataset inference takes 30
seconds. We found it to be much faster than directly optimizing transformation parameters (TI
clustering) for which convergence took more than 10 hours of training.

3.4 Experiments

In this section, we first analyze our approach and compare it to state-of-the-art, then showcase
its interest for image collection analysis and visualization.
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(a) Prototypes learned for different datasets

(b) Transformations predicted for all prototypes for 4 MNIST images

Figure 3.2: Qualitative results. (a) compares prototypes learned from GMM and our DTI GMM, (b)
shows transformed prototypes given query samples from MNIST and highlight the closest prototype.

3.4.1 Analysis and comparisons

Similar to previous work on image clustering, we evaluate our approach with global classifi-
cation accuracy (ACC), where a cluster-to-class mapping is computed using the Hungarian
algorithm [Kuhn and Yaw, 1955], and Normalized Mutual Information (NMI). Datasets and
corresponding transformation modules we used are described in Appendix A.1.

Comparison on standard benchmarks. In Table 3.1, we report our results on standard
image clustering benchmarks, i.e. digit datasets (MNIST [LeCun et al., 1998], USPS [Hastie
et al., 2001]), a clothing dataset (Fashion-MNIST [Xiao et al., 2017]) and a face dataset
(FRGC [Phillips et al., 2005]). We also report results for SVHN [Netzer et al., 2011] where
concurrent methods use pre-processing to remove color bias. In the table, we separate
representation-based from pixel-based methods and mark results using data augmentation
or manually selected features as input. Note that our results depend on initialization, we provide
detailed statistics in Appendix A.3.

Our DTI clustering is fully unsupervised and does not require any data augmentation, ad
hoc features, nor any hyper-parameter while performing clustering directly in pixel space.
We report average performances and performances of the minimal loss run which we found
to correlate well with high performances (Appendix A.3). Because this non-trivial criterion
allows to automatically select a run in a fully unsupervised way, we argue it can be compared
to average results from competing methods which don’t provide such criterion.

First, DTI clustering achieves competitive results on all datasets, in particular improving
state-of-the-art by a significant margin on SVHN and Fashion-MNIST. For SVHN, we first
found that the prototypes quality was harmed by digits on the side of the image. To pay more
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Method Eval MNIST-1k MNIST-color affNIST-test

[Jiang et al., 2017] avg 49.6 (5.6) 11.9 (1.2) Div.
[Hu et al., 2017] avg 67.9 (2.3) 10.6 (0.1) 18.2 (2.6)
[Ji et al., 2019] avg 63.4 (0.4) 10.6 (0.0) 57.6 (0.0)

minLoss 63.2 10.6 57.6

DTI K-means avg 79.8 (6.9) 96.7 (0.1) 95.5 (3.3)
minLoss 90.5 96.8 97.0

DTI GMM avg 80.8 (7.2) 96.0 (0.2) 93.3 (5.9)
minLoss 87.1 95.8 97.0

(a) Augmented and specific datasets. Clustering accuracy (%)
with standard deviation for methods applied on raw images (no
pre-processing). We used 10 runs for our method and 5 for the
baselines.

Method Avg MinLoss

DTI clustering (aff-morpho-tps) 97.3 97.2
ordering: aff-tps-morpho 95.5 96.9
ordering: morpho-aff-tps 27.5 97.0
w/o morphological 94.8 95.8
w/o thin plate spline 90.0 82.5
w/o affine 85.1 96.8
affine only 90.1 90.5
w/o empty cluster reassignment 80.9 78.6
w/o curriculum learning 83.9 78.9

TI clustering (aff-morpho-tps, 1 run) 26.3 26.3
TI clustering (affine only) 73.0 73.1

(b) Ablation study on MNIST. Clustering
accuracy (%) over 10 runs.

Table 3.2: Additional quantitative results.

attention to the center digit, we weighted the clustering loss by a Gaussian weight (ϖ = 7).
It led to better prototypes and allowed us to improve over all concurrent methods by a large
margin. Compared to representation-based methods, our pixel-based clustering is highly
interpretable. Figure 3.2a shows standard GMM prototypes and our prototypes learned with
DTI GMM which appear to be much sharper than standard ones. This directly stems from the
quality of the learned transformations, visualized in Figure 3.2b. Our transformation modules
can successfully align the prototype, adapt the thickness and apply local elastic deformations.
More alignment results are available on our project webpage.

Augmented and specific datasets. DTI clustering also works on small, colored and mis-
aligned datasets. In Table 3.2a, we highlight these strengths on specifics datasets generated
from MNIST: MNIST-1k is a 1000 images subset, MNIST-color is obtained by randomly
selecting a color for the foreground and background and affNIST-test1 is the result of random
affine transformations. We used an online implementation2 for VaDE [Jiang et al., 2017] and
official ones for IMSAT [Hu et al., 2017] and IIC [Ji et al., 2019] to obtain baselines. Our
results show that the performances of DTI clustering is barely affected by spatial and color
transformations, while baseline performances drop on affNIST-test and are almost chance on
MNIST-color. Figure 3.2a shows the quality and interpretability of our cluster centers on
affNIST-test and MNIST-color. DTI clustering also seems more data-efficient than the baselines
we tested.

Ablation on MNIST. In Table 3.2b, we conduct an ablation study on MNIST of our full
model trained following Section 3.3.2 with affine, morphological and TPS transformations.

1https://www.cs.toronto.edu/~tijmen/affNIST/
2https://github.com/GuHongyang/VaDE-pytorch

https://www.tmonnier.com/DTIClustering
https://www.cs.toronto.edu/~tijmen/affNIST/
https://github.com/GuHongyang/VaDE-pytorch
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(a) Full sets of prototypes discovered with GMM and DTI GMM

(b) Examples of cluster centers and aligned images with DTI GMM (20 clusters)

Figure 3.3: Qualitative results on real photographs. (a) Clustering results from photographs of
different locations in Li and Snavely [2018] (1,089 Sacre Coeur top-left, 1,688 Trevi fountain top-right,
2,625 Notre-Dame bottom-left) and 980 Baroque portraits from Karayev et al. [2014] (bottom-right). (b)
Clustering results from 1,892 Florence cathedral images from Li and Snavely [2018]. Top row shows
learned prototypes while the three bottom rows show examples of images from each cluster and aligned
prototypes. These clusters contain respectively 44, 154, 134, 64, 71, 133, 85 and 64 images. The left six
examples are successful clusters while the two right clusters are relative failure cases.

We first explore the effect of transformation modules. Their order is not crucial, as shown by
similar minLoss performances, but can greatly affect the stability of the training, as can be seen
in the average results. Each module contributes to the final performance, affine transformations
being the most important. We then validate our training strategy showing that both empty
cluster reassignment and curriculum learning for the different modules are necessary. Finally,
we directly optimize the loss of Equation (3.2) (TI clustering) by optimizing the transformation
parameters for each sample at each iteration of the batch clustering algorithm, without using
our parameter predictors. With rich transformations which have many parameters, such as TPS
and morphological ones, this approach fails completely. Using only affine transformations, we
obtain results clearly superior to standard clustering, but worse than ours.
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3.4.2 Application to web images

One of the main interest of our DTI clustering is that it allows to discover trends in real image
collections. All images are resized and center cropped to 128→128. The selection of the
number of clusters is a difficult problem and is discussed in Appendix A.3.

In Figure 3.1c, we show examples of prototypes discovered in very large unfiltered sets
(15k each) of Instagram images associated to different hashtags3 using DTI GMM applied with
40 clusters. While many images are noise and are associated to prototypes which are not easily
interpretable, we show prototypes where iconic photos and poses can be clearly identified.
To the best of our knowledge, we believe we are the first to demonstrate this type of results
from raw social network image collections. Comparable results in AverageExplorer [Zhu et al.,
2014], e.g. on Santa images, could be obtained using ad hoc features and user interactions,
while our results are produced fully automatically.

Figure 3.3 shows qualitative clustering results on MegaDepth [Li and Snavely, 2018] and
WikiPaintings [Karayev et al., 2014]. Similar to our results on image clustering benchmarks,
our learned prototypes are more relevant and accurate than the ones obtained from standard
clustering. Note that some of our prototypes are very sharp: they typically correspond to sets
of photographs between which we can accurately model deformations, e.g. scenes that are
mostly planar, with little perspective effects. On the contrary, more unique photographs and
photographs with strong 3D effects that we cannot model will be associated to less interpretable
and blurrier prototypes, such as the ones in the last two columns of Figure 3.3b. In Figure 3.3b,
in addition to the prototypes discovered, we show examples of images contained in each cluster
as well as the aligned prototype. Even for such complex images, the simple combination of
our color and spatial modules manages to model real image transformations like illumination
variations and viewpoint changes. More web image clustering results are shown on our project
webpage.

3.5 Conclusion

We have introduced an efficient deep transformation-invariant clustering approach in raw input
space. Our key insight is the online optimization of a single clustering objective over clustering
parameters and deep image transformation modules. We demonstrate competitive results on
standard image clustering benchmarks, including improvements over state-of-the-art on SVHN
and Fashion-MNIST. We also demonstrate promising results for real photograph collection
clustering and visualization. Finally, note that our DTI clustering framework is not specific

3https://github.com/arc298/instagram-scraper was used to scrape photographs

https://www.tmonnier.com/DTIClustering
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to images and can be extended to other types of data as long as appropriate transformation
modules are designed beforehand.



Chapter 4

Discovering Objects With Sprite Modeling

Figure 4.1: Discovering Objects with Sprite Modeling. Our approach learns without supervision
to decompose images into layers modeled as transformed instances of prototypical objects called
sprites. We show an example of decomposition on CLEVR [Johnson et al., 2017] (left) and examples
of discovered sprites for Tetrominoes [Greff et al., 2019] and GTSRB [Stallkamp et al., 2012] (right).
Transparency is visualized using light gray checkerboards.

4.1 Introduction

The aim of this chapter is to learn without any supervision a layered decomposition of images,
where each layer is a transformed instance of a prototypical object. Such an interpretable
and layered model of images could be beneficial for a plethora of applications like object
discovery [Eslami et al., 2016; Burgess et al., 2019], image edition [Wu et al., 2017b; Greff
et al., 2019], future frame prediction [Wu et al., 2017a], object pose estimation [Romaszko
et al., 2017] or environment abstraction [Anand et al., 2019; Lin et al., 2020b]. Recent works
in this direction [Burgess et al., 2019; Greff et al., 2019; Locatello et al., 2020] typically learn
layered image decompositions by generating layers with autoencoder networks. In contrast,
we explicitly model them as transformations of a set of prototypical images with transparency,

49
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which we refer to as sprites. These sprites are mapped onto their instances through geometric
and colorimetric transformations resulting in what we call object layers. An image is then
assembled from ordered object layers so that each layer occludes previous ones in regions
where they overlap.

Our composition model is reminiscent of the classic computer graphics sprite model,
popular in console and arcade games from the 1980s. While classical sprites were simply
placed at different positions and composited with a background, we revisit the notion in a spirit
similar to Jojic and Frey’s work on video modeling [Jojic and Frey, 2001] by using the term in a
more generic sense: our sprites can undergo rich geometric transformations and color changes.

We jointly learn in an unsupervised manner both the sprites and parametric functions pre-
dicting their transformations to explain images. This is related to the recent deep transformation-
invariant (DTI) method designed for clustering by Monnier et al. [2020]. Unlike this work,
however, we handle images that involve a variable number of objects with limited spatial
supports, explained by different transformations and potentially occluding each other. This
makes the problem very challenging because objects cannot be treated independently and the
possible number of image compositions is exponential in the number of layers.

We experimentally demonstrate in Section 4.3.1 that our method is on par with the state of
the art on the synthetic datasets commonly used for image decomposition evaluation [Greff et al.,
2019]. Because our approach explicitly models image compositions and object transformations,
it also enables us to perform simple and controlled image manipulations on these datasets. More
importantly, we demonstrate that our model can be applied to real images (Section 4.3.2), where
it successfully identifies objects and their spatial extent. For example, we report an absolute
5% increase upon the state of the art on the popular SVHN benchmark [Netzer et al., 2011]
and good cosegmentation results on the Weizmann Horse database [Borenstein and Ullman,
2004]. We also qualitatively show that our model successfully discriminates foreground from
background on challenging sets of social network images.

Contributions. To summarize, we present:
• an unsupervised learning approach that explains images as layered compositions of

transformed sprites with a background model;
• strong results on standard synthetic multi-object benchmarks using the usual instance

segmentation evaluation, and an additional evaluation on semantic segmentation, which
to the best of our knowledge has never been reported by competing methods; and

• results on real images for clustering and cosegmentation, which we believe has never
been demonstrated by earlier unsupervised image decomposition models.

Code and data are available at our project webpage: www.tmonnier.com/DTI-Sprites.

https://www.tmonnier.com/DTI-Sprites
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Figure 4.2: Overview. Given an input image (highlighted in red) we predict for each layer the
transformations to apply to the sprites that best reconstruct the input. Transformed sprites and background
can be composed into many possible reconstructions given a predicted occlusion matrix ε. We introduce
a greedy algorithm to select the best reconstruction (highlighted in green).

4.2 Approach

In this section, we first present our image formation model (Section 4.2.1), then describe our
unsupervised learning strategy (Section 4.2.2). Given N colored images x1:N of size H → W ,
we want to learn their decomposition into L object layers defined by the instantiations of K

sprites. Figure 4.2 shows an overview of our approach.

Notations. We write a1:n the ordered set {a1, . . . , an}, ⇒ pixel-wise multiplication and use
bold notations for images. Given N colored images x1:N of size H → W , we want to learn their
decomposition into L object layers defined by the instantiations of K sprites.

4.2.1 Image formation model

Layered composition process. Motivated by early works on layered image models [Math-
eron, 1968; Jojic and Frey, 2001], we propose to decompose an image into L object layers o1:L

which are overlaid on top of each other. Each object layer oϖ is a four-channel image of size
H → W , three channels correspond to a colored RGB appearance image o

c
ϖ, and the last one o

ϑ
ϖ

is a transparency or alpha channel over o
c
ϖ. Given layers o1:L, we define our image formation

process as a recursive composition:

↓↼ > 0, cϖ = o
ϑ
ϖ ⇒ o

c
ϖ + (1 ↔ o

ϑ
ϖ ) ⇒ cϖ↗1, (4.1)
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where c0 = 0, and the final result of the composition is cL. Note that this process explicitly
models occlusion: the first layer corresponds to the farthest object from the camera, and layer
L is the closest, occluding all the others. In particular, we model background by using a first
layer with o

ϑ
1 = 1.

Unfolding the recursive process in Equation (4.1), the layered composition process can be
rewritten in the compact form:

Cϱ(o1, . . . , oL) =
L∑

ϖ=1

( L∏

j=1
(1 ↔ ςjϖo

ϑ
j )

)
⇒ o

ϑ
ϖ ⇒ o

c
ϖ, (4.2)

where ςjϖ = [j>ϖ] is the indicator function of j > ↼. ς is a L → L binary matrix we call
occlusion matrix: for given indices j and ↼, ςjϖ = 1 if layer j occludes layer ↼, and ςjϖ = 0
otherwise. This gives Equation (4.2) a clear interpretation: each layer appearance o

c
ϖ is masked

by its own transparency channel o
ϑ
ϖ and other layers j occluding it, i.e. for which ςjϖ = 1. Note

that we explicitly introduce the dependency on ς in the composition process Cϱ because we will
later predict it, which intuitively corresponds to a layer reordering.

Sprite modeling. We model each layer as an explicit transformation of one of K learnable
sprites s1:K , which can be seen as prototypes representing the object categories. Each sprite
sk is a learnable four-channel image of arbitrary size, an RGB appearance image s

c
k and a

transparency channel s
ϑ
k . To handle variable number of objects, we model object absence with

an empty sprite s0 = 0 added to the K sprite candidates and penalize the use of non-empty
sprites during learning (see Section 4.2.2). Such modeling assumes we know an upper bound
of the maximal number of objects, which is rather standard in such a setting [Burgess et al.,
2019; Greff et al., 2019; Locatello et al., 2020].

Inspired by the recent deep transformation-invariant (DTI) framework designed for clus-
tering [Monnier et al., 2020], we assume that we have access to a family of differentiable
transformations Tω parametrized by ω - e.g. an affine transformation with ω in IR6 implemented
with a spatial transformer [Jaderberg et al., 2015] - and we model each layer as the result of the
transformation Tω applied to one of the K sprites. We define two sets of transformations for a
given layer ↼: (i) T

lay
ςε

the transformations parametrized by εϖ and shared for all sprites in that
layer, and (ii) T

spr
φεk

the transformations specific to each sprite and parametrized by ↽ϖk. More
formally, for given layer ↼ and sprite k we write:

Tωεk
(sk) = T

lay
ςε

↘ T
spr

φεk
(sk), (4.3)

where ωϖk = (εϖ, ↽ϖk) and T(ςε,φεk) = T
lay

ςε
↘ T

spr
φεk

.



4.2. APPROACH 53

Although it could be included in T
spr

φεk
, we separate T

lay
ςε

to constrain transformations and
avoid bad local minima. For example, we use it to model a coarse spatial positioning so that all
sprites in a layer attend to the same object in the image. On the contrary, we use T

spr
φεk

to model
sprite specific deformations, such as local elastic deformations.

When modeling background, we consider a distinct set of K ↔ background prototypes b1:K→ ,
without transparency, and different families of transformations T

bkg
ω→ . For simplicity, we write

the equations for the case without background and omit sprite-specific transformations in the
rest of the chapter, writing Tωε

(sk) instead of Tωεk
(sk).

To summarize, our image formation model is defined by the occlusion matrix ς, the per-
layer sprite selection (k1, . . . , kL), the corresponding transformation parameters (ω1, . . . , ωL),
and outputs an image x such that:

x = Cϱ

(
Tω1(sk1), . . . , TωL(skL)

)
. (4.4)

We illustrate our image formation model in Figure 4.1 and provide a detailed example in Fig-
ure 4.2.

4.2.2 Learning

We learn our image model without any supervision by minimizing the objective function:

L(s1:K , ⇀1:L, ⇁) =
N∑

i=1
min

k1,...,kL

(
λ

L∑

j=1
[kj ↘=0] +

∥∥∥∥xi ↔ C↼(xi)
(

T↽1(xi)(sk1), . . . , T↽L(xi)(skL)
)∥∥∥∥

2

2

)
, (4.5)

where s1:K are the sprites, ⇀1:L and ⇁ are neural networks predicting the transformation
parameters and occlusion matrix for a given image xi, λ is a scalar hyper-parameter and [kj ↘=0]

is the indicator function of kj ⇑= 0. The first sum is over all images in the database, the
minimum corresponds to the selection of the sprite used for each layer and the second sum
counts the number of non-empty sprites. If λ > 0, this loss encourages reconstructions using
the minimal number of non-empty sprites. In practice, we use λ = 10↗4.

Note the similarity between our loss and the gradient-based adaptation [Bottou and Bengio,
1995] of the K-means algorithm [MacQueen, 1967] where the squared Euclidean distance to the
closest prototype is minimized, as well as with its transformation-invariant version [Monnier
et al., 2020] including neural networks modeling transformations. In addition to the layered
composition model described in the previous section, the main two differences with our model
are the joint optimization over L sprite selections and the occlusion modeling that we discuss
next.
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Algorithm 2: Greedy sprite selection.
Input: image x, occlusion ς, (K + 1) → L object layers candidates T↽ε(x)(sk), steps T
Output: sprite indices (k1, . . . , kL)
Initialization: ↓↼ ↑ {1, . . . , L}, kϖ ⇓ 0, oϖ ⇓ 0

1 for t = 1, . . . , T do # iterations
2 for ↼ = 1, . . . , L do # loop on layers

3 kϖ ⇓ mink

[
λ [k ↘=0] +

4 ↗x ↔ Cϱ(o1:ϖ↗1, T↽ε(x)(sk), oϖ+1:L)↗2
2

]

5 oϖ ⇓ T↽ε(x)(skε
)

6 end
7 end
8 return k1, . . . , kL

Sprites selection. Because the minimum in Equation (4.5) is taken over the (K +1)L possible
selections leading to as many reconstructions, an exhaustive search over all combinations
quickly becomes impossible when dealing with many objects and layers. Thus, we propose
an iterative greedy algorithm to estimate the minimum, described in Algorithm 2 and used
when L > 2. While the solution it provides is of course not guaranteed to be optimal, we
found it performs well in practice. At each iteration, we proceed layer by layer and iteratively
select for each layer the sprite kϖ minimizing the loss, keeping all other object layers fixed.
This reduces the number of reconstructions to perform to T → (K + 1) → L. In practice, we
have observed that convergence is reached after 1 iteration for Tetrominoes and 2-3 iterations
for Multi-dSprites and CLEVR6, so we have respectively used T = 1 and T = 3 in these
experiments. We experimentally show in our ablation study presented in Section 4.3.1 that
this greedy approach yields performances comparable to an exhaustive search when modeling
small numbers of layers and sprites.

Occlusion modeling. Occlusion is modeled explicitly in our composition process defined
in Equation (4.2) since o1, . . . , oL are ranked by depth. However, we experimentally observed
that layers learn to specialize to different regions in the image. This seems to correspond to a
local minimum of the loss function, and the model does not manage to reorder the layers to
predict the correct occlusion. Therefore, we relax the model and predict an occlusion matrix
ς = ⇁(x) ↑ [0, 1]L≃L instead of keeping it fixed. More precisely, for each image x we predict
1
2L(L ↔ 1) values using a neural network followed by a sigmoid function. These values are
then reshaped to a lower triangular L → L matrix with zero diagonal, and the upper part is
computed by symmetry such that: ↓i < j, ςij = 1 ↔ ςji. While such predicted occlusion matrix
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is not binary and does not directly translate into a layer reordering, it still allows us to compute
a composite image using Equation (4.2) and the masks associated to each object. Note that
such a matrix could model more complex occlusion relationships such as non-transitive ones.
At inference, we simply replace ςij by ςij > 0.5 to obtain binary occlusion relationships. We
also tried computing the closest matrix corresponding to a true layer reordering and obtained
similar results. Note that when we use a background model, its occlusion relationships are
fixed, i.e. ↓j > 1, ςj1 = 1.

Training details. Two elements of our training strategy are crucial to the success of learning.
First, following Monnier et al. [2020] we adopt a curriculum learning of the transformations,
starting by the simplest ones. Second, inspired by Tieleman [2014] and Kosiorek et al. [2019],
we inject uniform noise in the masks in such a way that masks are encouraged to be binary
(see Appendix B.3 for details). This allows us to resolve the ambiguity that would otherwise
exist between the color and alpha channels and obtain clear masks. We provide additional details
about networks’ architecture, computational cost, transformations used and implementation
in Appendix B.3.

4.3 Experiments

Assessing the quality of an object-based image decomposition model is ambiguous and difficult,
and downstream applications on synthetic multi-object benchmarks such as Kabra et al. [2019]
are typically used as evaluations. Thus, recent approaches (e.g., Burgess et al. [2019]; Greff
et al. [2019]; Engelcke et al. [2020]; Locatello et al. [2020]) first evaluate their ability to
infer spatial arrangements of objects through quantitative performances for object instance
discovery. The knowledge of the learned concept of object is then evaluated qualitatively
through convincing object-centric image manipulation [Burgess et al., 2019; Greff et al.,
2019], occluded region reconstructions [Burgess et al., 2019; Locatello et al., 2020] or realistic
generative sampling [Engelcke et al., 2020]. None of these approaches explicitly model
categories for objects and, to the best of our knowledge, their applicability is limited to
synthetic imagery only.

In this section, we first evaluate and analyse our model on the standard multi-object
synthetic benchmarks (Section 4.3.1). Then, we demonstrate that our approach can be applied
to real images (Section 4.3.2). We use the 2-layer version of our model to perform clustering
(Section 4.3.2), cosegmentation (Section 4.3.2), as well as qualitative object discovery from
unfiltered web image collections (Section 4.3.2).
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4.3.1 Multi-object synthetic benchmarks

Datasets and evaluation. Tetrominoes [Greff et al., 2019] is a 60k dataset generated by
placing three Tetrominoes without overlap in a 35 → 35 image. There is a total of 19 different
Tetrominoes (counting discrete rotations). Multi-dSprites [Kabra et al., 2019] contains 60k
images of size 64 → 64 with 2 to 5 objects sampled from a set of 3 different shapes: ellipse,
heart, square. CLEVR6 [Johnson et al., 2017; Greff et al., 2019] contains 34,963 synthetically
generated images of size 128 → 128. Each image is composed of a variable number of objects
(from 3 to 6), each sampled from a set of 6 categories - 3 different shapes (sphere, cylinder,
cube) and 2 materials (rubber or metal) - and randomly rendered. We thus train our method
using one sprite per object category and as many layers as the maximum number of objects
per image, with a background layer when necessary. Following standard practices [Greff et al.,
2019; Locatello et al., 2020], we evaluate object instance segmentation on 320 images by
averaging over all images the Adjusted Ranked Index (ARI) computed using ground-truth
foreground pixels only (ARI-FG in our tables). Note that because background pixels are
filtered, ARI-FG strongly favors methods like Greff et al. [2019]; Locatello et al. [2020]
which oversegment objects or do not discriminate foreground from background. To limit
the penalization of our model which explicitly models background, we reassign predicted
background pixels to the closest object layers before computing this metric. However, we
argue that foreground/background separation is crucial for any downstream applications and
also advocate the use of a true ARI metric computed on all pixels (including background)
which we include in our results. In addition, we think that the knowledge of object category
should be evaluated and include quantitative results for unsupervised semantic segmentation
in Appendix B.1.

Results. Our results are compared quantitatively to state-of-the-art approaches in Table 4.1.
On Multi-dSprites, an outlier run out of 5 was automatically filtered based on its high re-
construction loss compared to the others. Our method obtains results on par with the best
competing methods across all benchmarks. While our approach is more successful on bench-
marks depicting 2D scenes, it still provides good results on CLEVR6 where images include
3D effects. We provide our results using the real ARI metric which we believe to be more
interesting as it is not biased towards oversegmenting methods. While this measure is not
reported by competing methods, a CLEVR6 decomposition example shown in official IODINE
implementation1 gives a perfect 100% ARI-FG score but reaches 20% in terms of ARI.

Compared to all competing methods, our approach explicitly models categories for objects.
In particular, it is able to learn prototypical images that can be associated to each object category.

1https://github.com/deepmind/deepmind-research/blob/master/iodine

https://github.com/deepmind/deepmind-research/blob/master/iodine
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Method Metric Tetrominoes Multi-dSprites CLEVR6

MONet [Burgess et al., 2019] ARI-FG - 90.4 ± 0.8 96.2 ± 0.6
IODINE [Greff et al., 2019] ARI-FG 99.2 ± 0.4 76.7 ± 5.6 98.8 ± 0.0
Slot Att. [Locatello et al., 2020] ARI-FG 99.5↫± 0.2 91.3 ± 0.3 98.8 ± 0.3
Ours ARI-FG 99.6 ± 0.2 92.5↫± 0.3 97.2 ± 0.2
Ours ARI 99.8 ± 0.1 95.1↫± 0.1 90.7 ± 0.1

Table 4.1: Multi-object instance discovery. Following standard practices, we report ARI-FG (ARI on
foreground pixels only) averaged over 5 runs. We also report our results with the real ARI, a metric we
advocate for future comparisons. We mark results (↫) where one outlier run is filtered out.

Dataset Model ARI-FG ARI

Multi-dSprites2 Full 95.5 ± 2.1 95.2 ± 1.9
w/o greedy algo. 94.4 ± 2.7 95.9 ± 0.3

Multi-dSprites Full 91.5 ± 2.2 95.0 ± 0.3
w/o occ. prediction 85.7 ± 2.2 94.2 ± 0.2

Tetrominoes Full 99.6 ± 0.2 99.8 ± 0.1
w/o shared transfo. 95.3 ± 3.7 82.6 ± 12.2

Table 4.2: Ablation study. Results are averaged over 5 runs.

The sprites discovered from CLEVR6 and Tetrominoes are shown in Figure 4.1. Note how
learned sprites on Tetrominoes are sharp and how we can identify material in CLEVR6 by
learning two different sprites for each shape.

In Figure 4.3, we show some qualitative results obtained on the three benchmarks. Given
sample images, we show from left to right the final reconstruction, semantic segmentation
(evaluated quantitatively in Appendix B.1) where each color corresponds to a different sprite,
instance segmentation, and the first four layers of the image decomposition. Note how we
manage to successfully predict occlusions, model variable number of objects, separate the
different instances, as well as identify the object categories and their spatial extents. More
random decomposition results are shown in Appendix B.4 and on our webpage.

Compared to other approaches which typically need a form of supervision to interpret
learned representations as object visual variations, our method has the advantage to give a
direct access to the object instance parameters, enabling us to directly manipulate them in
images. In Figure 4.4, we show different object-centric image manipulations such as objects
swapping as well as color, position and scale variations. Note that we are also able to render
out of distribution instances, like the pink sphere or the gigantic cylinder.

https://www.tmonnier.com/DTI-Sprites
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Figure 4.3: Multi-object discovery. From left to right, we show inputs, reconstructions, semantic
(each color corresponds to a different sprite) and instance segmentations, and first decomposition layers
colored w.r.t. their instance mask.

Ablation study. We analyze the main components of our model in Table 4.2. For compu-
tational reasons, we evaluate our greedy algorithm on Multi-dSprites2 - the subset of Multi-
dSprites containing only 2 objects - and show comparable performances to an exhaustive search
over all combinations. Occlusion prediction is evaluated on Multi-dSprites which contains
many occlusions. Because our model with fixed occlusion does not manage to reorder the
layers, performances are significantly better when occlusion is learned. Finally, we compare
results obtained on Tetrominoes when modeling sprite-specific transformations only, without
shared ones, and show a clear gap between the two settings. We provide analyses on the effects
of K and λ in Appendix B.2.

Limitations. Our optimization model can be stuck in local minima. A typical failure mode
on Multi-dSprites can be seen in the reconstructions in Figure 4.3 where a triangular shape
is learned instead of the heart. This sprite can be aligned to a target heart shape using three
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Figure 4.4: Object-centric image manipulation. Given a query image (top left) from CLEVR6 [Johnson
et al., 2017], we show the closest reconstruction (top right) and several image manipulations (next four
rows). From top to bottom, we respectively use different sprites, change the objects color, vary their
positions and modify the scale.

different equivalent rotations, and our model does not manage to converge to a consistent
one. This problem could be overcome by either modeling more sprites, manually computing
reconstructions with different discrete rotations, or guiding transformation predictions with
supervised sprite transformations.

4.3.2 Real image benchmarks

Clustering

Datasets. We evaluate our model on two real image clustering datasets using 2 layers, one
for the background and one for the foreground object. SVHN [Netzer et al., 2011] is a standard
clustering dataset composed of digits extracted from house numbers cropped from Google
Street View images. Following standard practices [Hu et al., 2017; Kosiorek et al., 2019;
Monnier et al., 2020], we evaluate on the labeled subset (99,289 images), but also use 530k
unlabeled extra samples for training. We also report results on traffic sign images using a
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Method Runs GTSRB-8 SVHN

Clustering on learned features
[Häusser et al., 2018] 20 - 38.6↭

[Kosiorek et al., 2019] 5 - 55.3‡

[Hu et al., 2017] 12 26.9↭⇀ 57.3↭†

[Van Gansbeke et al., 2020] 5 90.4↭⇀ 54.2↭⇀

Clustering on pixel values
[Monnier et al., 2020] 10 54.3⇀ 57.4
Ours 10 89.4 63.1

(a) Clustering results

Method Accuracy (%)

[Rubio et al., 2012] 74.9
[Joulin et al., 2010] 80.1
[Lattari et al., 2015] 84.6
[Chang et al., 2011] 86.4
[Yu et al., 2014] 87.6
Ours 87.9

(b) Cosegmentation results

Table 4.3: Additional comparisons. (a) We report average clustering accuracy. We mark methods we
ran ourselves with official implementations (ω), use data augmentation (↭) or ad-hoc representations (†
for GIST, ‡ for Sobel filters). (b) We report segmentation accuracy on the Weizmann Horse database.

balanced subset of the GTSRB dataset [Stallkamp et al., 2012] which we call GTSRB-8. We
selected classes with 1000 to 1500 instances in the training split, yielding 8 classes and 10,650
images which we resize to 28 → 28.

Results. We compare our model to state-of-the-art methods in Table 4.3a using global
clustering accuracy, where the cluster-to-class mapping is computed using the Hungarian
algorithm [Kuhn and Yaw, 1955]. We train our 2-layer model with as many sprites as classes
and a single background prototype. On both benchmarks, our approach provides competitive
results. In particular, we improve state of the art on the standard SVHN benchmark by an
absolute 5% increase.

Similar to DTI-Clustering, our method performs clustering in pixel-space exclusively and
has the advantage of providing interpretable results. Figure 4.5 shows learned sprites on the
GTSRB-8 and SVHN datasets and compares them to prototypes learned with DTI-Clustering.
Note in particular the sharpness of the discovered GTSRB-8 sprites.

Cosegmentation

Dataset. We use the Weizmann Horse database [Borenstein and Ullman, 2004] to evaluate
quantitatively the quality of our masks. It is composed of 327 side-view horse images resized
to 128 → 128. Although relatively simple compared to more recent cosegmentation datasets,
it presents significant challenges compared to previous synthetic benchmarks because of the
diversity of both horses and backgrounds. The dataset was mainly used by classical (non-deep)
methods which were trained and evaluated on 30 images for computational reasons while we
train and evaluate on the full set.
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Figure 4.5: Qualitative clustering results. We compare prototypes learned using DTI-Clustering and
our discovered sprites on GTSRB-8 (left) and SVHN (right).

Results. We compare our 2-layer approach with a single sprite to classical cosegmentation
methods in Table 4.3b and report segmentation accuracy - mean % of pixels correctly classified
as foreground or background - averaged over 5 runs. Our results compare favorably to these
classical approaches. Although more recent approaches could outperform our method on this
dataset, we argue that obtaining performances on par with such competing methods is already a
strong result for our layered image decomposition model.

We present in Figure 4.6 some visual results of our approach. First, the discovered sprite
clearly depicts a horse shape and its masks is sharp and accurate. Learning such an interpretable
sprite from this real images collection is already interesting and validates that our sprite-
based modeling generalizes to real images. Second, although the transformations modeled
are quite simple (a combination of color and spatial transformations), we demonstrate good
reconstructions and decompositions, yielding accurate foreground extractions.

Unfiltered web image collections

We demonstrate our approach’s robustness by visualizing sprites discovered from web image
collections. We use the same Instagram collections introduced in Monnier et al. [2020], where
each collection is associated to a specific hashtag and contains around 15k images resized and
center cropped to 128 → 128. We apply our model with 40 sprites and a background.

Figure 4.7 shows the 8 best qualitative sprites discovered from Instagram collections
associated to #santaphoto and #weddingkiss. Even in this case where images are mostly noise,
our approach manages to discover meaningful sprites and segmentations with clear visual
variations. For example, we can distinguish standing santas from seating ones, as well as the



62 CHAPTER 4. DISCOVERING OBJECTS WITH SPRITE MODELING

Figure 4.6: Qualitative cosegmentation results. Sprite and mask (left) learned from Weizmann
Horse [Borenstein and Ullman, 2004] and some result examples (right) giving for each input, its
reconstruction, the layered composition and extracted foreground.

ones alone or surrounded by children. We additionally show examples of reconstructions and
image compositions for some of the 8 sprites shown for #santaphoto.

4.4 Conclusion

We have introduced a new unsupervised model which jointly learns sprites, transformations
and occlusions to decompose images into object layers. Beyond standard multi-object synthetic
benchmarks, we have demonstrated that our model leads to actual improvements for real image
clustering with a 5% boost over the state of the art on SVHN and can provide good segmentation
results. We even show it is robust enough to provide meaningful results on unfiltered web image
collections. Although our object modeling involves unique prototypical images and small sets
of transformations limiting their instances diversity, we argue that accounting for such diversity
while maintaining a category-based decomposition model is extremely challenging, and our
approach is the first to explore this direction as far as we know.
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Figure 4.7: Web image results. We show the 8 best qualitative sprites among 40 discovered from
Instagram collections (top) as well as decomposition results for samples represented by one of the sprites
shown for #santaphoto (bottom).





Chapter 5

Single-View Reconstruction Without
Supervision

Figure 5.1: Single-View Reconstruction Without Supervision. (left) Given a collection of single-view
images from an object category, we learn without additional supervision an autoencoder that explicitly
generates shape, texture, pose and background. (right) At inference time, our approach reconstructs
high-quality textured meshes from raw single-view images.

5.1 Introduction

One of the most magical human perceptual abilities is being able to see the 3D world behind a
2D image – a mathematically impossible task! Indeed, the ancient Greeks were so incredulous at
the possibility that humans could be “hallucinating” the third dimension, that they proposed the
utterly implausible Emission Theory of Vision [Finger, 1994] (eye emitting light to “sense” the
world) to explain it to themselves. In the history of computer vision, single-view reconstruction
(SVR) has had an almost cult status as one of the holy grail problems [Hoiem et al., 2005,

65
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2008; Saxena et al., 2009]. Recent advancements in deep learning methods have dramatically
improved results in this area [Choy et al., 2016; Mescheder et al., 2019]. However, the best
methods still require costly supervision at training time, such as multiple views [Liu et al., 2019;
Niemeyer et al., 2020]. Despite efforts to remove such requirements, the works with the least
supervision still rely on two signals limiting their applicability: (i) silhouettes and (ii) strong
assumptions such as symmetries [Kanazawa et al., 2018; Hu et al., 2021], known template
shapes [Goel et al., 2020; Tulsiani et al., 2020], or the absence of background [Wu et al., 2020].
Although crucial to achieve reasonable results, priors like silhouettes and symmetry can also
harm the reconstruction quality: silhouette annotations are often coarse [Chen et al., 2019b]
and small symmetry prediction errors can yield unrealistic reconstructions [Wu et al., 2020;
Goel et al., 2020].

In this paper, we propose the most unsupervised approach to single-view reconstruction
to date, which we demonstrate to be competitive for diverse datasets. Table 5.1 summarizes
the differences between our approach and representative prior works. More precisely, we learn
in an analysis-by-synthesis fashion a network that predicts for each input image: 1) a 3D
shape parametrized as a deformation of an ellipsoid, 2) a texture map, 3) a camera viewpoint,
and 4) a background image (Figure 5.1). Our main insight to remove the supervision and
assumptions required by other methods is to leverage the consistency across different instances.
First, we design a training procedure, progressive conditioning, which encourages the model
to share elements between images by strongly constraining the variability of shape, texture
and background at the beginning of training and progressively allowing for more diversity

Method Supervision Data Output

[Wang et al., 2018], [Groueix et al., 2018], [Mescheder et al., 2019] 3D ShapeNet 3D
[Yan et al., 2016], [Kato et al., 2018] MV, CK, S ShapeNet 3D
[Tulsiani et al., 2017b], [Liu et al., 2019], [Niemeyer et al., 2020] MV, CK, S ShapeNet 3D, T
[Zhang et al., 2021b] MV, CK, S Bird, Car, Horse 3D, T
[Insafutdinov and Dosovitskiy, 2018], [Tulsiani et al., 2018] MV, S ShapeNet 3D, P
[Vicente et al., 2014], [Kar et al., 2015], [Tulsiani et al., 2017b] CK, S Pascal3D 3D
[Kanazawa et al., 2018] CK, S, A(†) Bird, Car, Plane 3D, T
[Lin et al., 2020a], [Duggal and Pathak, 2022] CK, S ShapeNet, Bird, Car, Plane 3D, T
[Henderson et al., 2020] CK, A(†) ShapeNet, Bird, Car 3D, T
[Goel et al., 2020], [Tulsiani et al., 2020] S, A(⇐, †) Animal, Car, Moto 3D, T, P
[Li et al., 2020] S, A(⇒, †) Animal, Car, Moto 3D, T, P
[Wu et al., 2021] S, A(‡) Vase 3D, T, P
[Hu et al., 2021] S, A(†) ShapeNet, Animal, Moto 3D, T, P
[Wu et al., 2020] A(↬, ⊋, †) Face D, T, P
[Henderson and Ferrari, 2019] A(↬, ⫅̸) ShapeNet 3D, P
Ours None ShapeNet, Animal, Car, Moto 3D, T, P

Table 5.1: Comparison with selected works. For each method, we outline the supervision and priors
used (3D, Multi-Views, Camera or Keypoints, Silhouettes, Assumptions like ⇔ template shape, †

symmetry, ‡ solid of revolution, ↖ semantic consistency, ↬ no/limited background, ⊋ frontal view, ⫅̸
no texture), which data it has been applied to and the model output (3D, Texture, Pose, Depth).
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(a) Progressive conditioning (b) Neighbor reconstruction

Figure 5.2: Leveraging cross-instance consistency. (a) Progressive conditioning amounts to gradually
increasing, in a multi-stage fashion, the size of the conditioning latent spaces, here associated to shape
zsh and texture ztx. (b) We explicitly share the shape and texture models across neighboring instances
by swapping their characteristics and applying a loss to associated neighbor reconstructions.

(Figure 5.2a). Second, we introduce a neighbor reconstruction loss, which explicitly enforces
neighboring instances from different viewpoints to share the same shape or texture model
(Figure 5.2b). Note that these simple yet effective techniques are data-driven and not specific
to any dataset. Our only remaining assumption is the knowledge of the semantic class of the
depicted object.

We also provide two technical insights that we found critical to learn our model without
viewpoint and silhouette annotations: (i) a differentiable rendering formulation inspired by
layered image models [Jojic and Frey, 2001; Monnier et al., 2021] which we found to perform
better than the classical SoftRasterizer [Liu et al., 2019], and (ii) a new optimization strategy
which alternates between learning a set of pose candidates with associated probabilities and
learning all other components using the most likely candidate.

We validate our approach on the standard ShapeNet [Chang et al., 2015] benchmark, real
image SVR benchmarks (Pascal3D+ Car [Xiang et al., 2014], CUB [Welinder et al., 2010]) as
well as more complex real-world datasets (CompCars [Yang et al., 2015], LSUN Motorbike
and Horse [Yu et al., 2016]). In all scenarios, we demonstrate results competitive with the best
supervised methods.
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Summary. We present UNICORN, a framework leveraging UNsupervised cross-Instance
COnsistency for 3D ReconstructioN. Our main contributions are: 1) the most unsupervised
SVR system to date, demonstrating state-of-the-art textured 3D reconstructions for both generic
shapes and real images, and not requiring supervision or restrictive assumptions beyond a
categorical image collection; 2) two data-driven techniques to enforce cross-instance consis-
tency, namely progressive conditioning and neighbor reconstruction. Code and video results
are available at: www.tmonnier.com/UNICORN.

5.2 Related work

We discuss works exploring cross-instance consistency and curriculum learning techniques, to
which our progressive conditioning is related.

Cross-instance consistency. Although all methods learned on categorical image collections
implicitly leverage the consistency across instances, few recent works explicitly explore such a
signal. Inspired by Kulkarni et al. [2019], the SVR system of Hu et al. [2021] is learned by
enforcing consistency between the interpolated 3D attributes of two instances and attributes
predicted for the associated reconstruction. Yao et al. [2021] discovers 3D parts using the in-
consistency of parts across instances. Closer to our approach, Navaneet et al. [2020] introduces
a loss enforcing cross-silhouette consistency. Yet it differs from our work in two ways: (i) the
loss operates on silhouettes, whereas our loss is adapted to image reconstruction by modeling
background and separating two terms related to shape and texture, and (ii) the loss is used as a
refinement on top of two cycle consistency losses for poses and 3D reconstructions, whereas
we demonstrate results without additional self-supervised losses.

Curriculum learning. The idea of learning networks by “starting small” dates back to Elman
[1993] where two curriculum learning schemes are studied: (i) increasing the difficulty of sam-
ples, and (ii) increasing the model complexity. We respectively coin them curriculum sampling
and curriculum modeling for differentiation. Known to drastically improve the convergence
speed [Bengio et al., 2009], curriculum sampling is widely adopted across various applica-
tions [Schroff et al., 2015b; Bengio et al., 2015; Ilg et al., 2017]. On the contrary, curriculum
modeling is typically less studied although crucial to various methods. For example, Wang et al.
[2018] perform SVR in a coarse-to-fine manner by increasing the number of mesh vertices,
and Monnier et al. [2020] cluster images by aligning them with transformations that increase in
complexity. We propose a new form of curriculum modeling dubbed progressive conditioning
which enables us to avoid bad minima.

https://www.tmonnier.com/UNICORN


5.3. APPROACH 69

Figure 5.3: Structured autoencoding. Given an input, we predict parameters that are decoded into 4
factors (shape, texture, pose, background) and composed to generate the output. Progressive conditioning
is represented with .

5.3 Approach

Our goal is to learn a neural network that reconstructs a textured 3D object from a single input
image. We assume we have access to a raw collection of images depicting objects from the
same category, without any further annotation. We propose to learn in an analysis-by-synthesis
fashion by autoencoding images in a structured way (Figure 5.3). We first introduce our
structured autoencoder (Section 5.3.1). We then present how we learn models consistent across
instances (Section 5.3.2). Finally, we discuss one more technical contribution necessary to our
system: an alternate optimization strategy for joint 3D and pose estimation (Section 5.3.3).

Notations. We use bold lowercase for vectors (e.g., a), bold uppercase for images (e.g., A),
double-struck uppercase for meshes (e.g., A), calligraphic uppercase for the main modules of
our system (e.g., A), lowercase indexed with generic parameters θ for networks (e.g., a⇁), and
write a1:N the ordered set {a1, . . . , an}.

5.3.1 Structured autoencoding

Overview. Our approach can be seen as a structured autoencoder: it takes an image as
input, computes parameters with an encoder, and decodes them into explicit and interpretable
factors that are composed to generate an image. We model images as the rendering of textured
meshes on top of background images. For a given image I, our model thus predicts a shape, a
texture, a pose and a background which are composed to get the reconstruction Î, as shown
in Figure 5.3. More specifically, the image I is fed to convolutional encoder networks e⇁
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which output parameters e⇁(I) = {zsh, ztx, a, zbg} used for the decoding part. a is a 9D vector
including the object pose, while the dimension of the latent codes zsh, ztx and zbg will vary
during training (see Section 5.3.2). In the following, we describe the decoding modules using
these parameters to build the final image by generating a shape, adding texture, positioning it
and rendering it over a background.

Shape deformation. We follow Tulsiani et al. [2020] and use the parametrization of At-
lasNet [Groueix et al., 2018] where different shapes are represented as deformation fields
applied to the unit sphere. We apply the deformation to an icosphere slightly stretched into
an ellipsoid mesh E using a fixed anisotropic scaling. More specifically, given a 3D vertex
x of the ellipsoid, our shape deformation module Szsh is defined by Szsh(x) = x + s⇁(x, zsh),
where s⇁ is a Multi-Layer Perceptron taking as input the concatenation of a 3D point x and a
shape code zsh. Applying this displacement to all the ellipsoid vertices enables us to generate
a shaped mesh S = Szsh(E). We found that using an ellipsoid instead of a raw icosphere was
very effective in encouraging the learning of objects aligned w.r.t. the canonical axes. Learning
surface deformations is often preferred to vertex-wise displacements as it enables mapping
surfaces, and thus meshes, at any resolution. For us, the mesh resolution is kept fixed and such
a representation is a way to regularize the deformations.

Texturing. Following the idea of CMR [Kanazawa et al., 2018], we model textures as an
image UV-mapped onto the mesh through the reference ellipsoid. More specifically, given
a texture code ztx, a convolutional network t⇁ is used to produce an image t⇁(ztx), which
is UV-mapped onto the sphere using spherical coordinates to associate a 2D point to every
vertex of the ellipsoid, and thus to each vertex of the shaped mesh. We write Tztx this module
generating a textured mesh T = Tztx(S).

Affine transformation. To render the textured mesh T, we define its position w.r.t. the camera.
In addition, we found it beneficial to explicitly model an anisotropic scaling of the objects.
Because predicting poses is difficult, we predict K poses candidates, defined by rotations r1:K

and translations t1:K , and associated probabilities p1:K . This involves learning challenges we
tackle with a specific optimization procedure described in Section 5.3.3. At inference, we select
the pose with highest probability. We combine the scaling and the most likely 6D pose in a
single affine transformation module Aa. More precisely, Aa is parametrized by a = {s, r, t},
where s, r, t ↑ IR3 respectively correspond to the three scales of an anisotropic scaling, the
three Euler angles of a rotation and the three coordinates of a translation. A 3D point x on the
mesh is then transformed by Aa(x) = rot(r)diag(s)x + t where rot(r) is the rotation matrix
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(a) Degenerate background (b) Degenerate 3D object

Figure 5.4: Degenerate solutions. An SVR system learned by raw image autoencoding is prone to
degenerate solutions through (a) the background or (b) the 3D object model. We alleviate the issue with
cross-instance consistency.

associated to r and diag(s) is the diagonal matrix associated to s. Our module is applied to all
points of the textured mesh T resulting in a posed mesh P = Aa(T).

Rendering with background. The final step of our process is to render the mesh over
a background image. The background image is generated from a background code zbg by
a convolutional network b⇁. A differentiable module Bzbg renders the posed mesh P over
this background image b⇁(zbg) resulting in a reconstructed image Î = Bzbg(P). We perform
rendering through soft rasterization of the mesh. Because we observed divergence results when
learning geometry from raw photometric comparison with the standard SoftRasterizer [Liu
et al., 2019; Ravi et al., 2020], we propose two key changes: a layered aggregation of the
projected faces and an alternative occupancy function. We present our custom differentiable
rendering function in Appendix C.1.

5.3.2 Unsupervised learning with cross-instance consistency

We propose to learn our structured autoencoder without any supervision, by synthesizing 2D
images and minimizing a reconstruction loss. Due to the unconstrained nature of the problem,
such an approach typically yields degenerate solutions (Figure 5.4a and Figure 5.4b). While
previous works leverage silhouettes and dataset-specific priors to mitigate this issue, we instead
propose two unsupervised data-driven techniques, namely progressive conditioning (a training
strategy) and neighbor reconstruction (a training loss). We thus optimize the shape, texture and
background by minimizing for each image I reconstructed as Î:

L3D = Lrec(I, Î) + λnbrLnbr + λregLreg, (5.1)

where λnbr and λreg are scalar hyperparameters, and Lrec, Lnbr and Lreg are respectively the
reconstruction, neighbor reconstruction, and regularization losses, described below. In all
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experiments, we use λnbr = 1 and λreg = 0.01. Note that we optimize pose prediction using a
slightly different loss in an alternate optimization scheme described in Section 5.3.3.

Reconstruction and regularization losses. Our reconstruction loss has two terms, a pixel-
wise squared L2 loss Lpix and a perceptual loss [Zhang et al., 2018] Lperc defined as an L2

loss on the relu3_3 layer of a pre-trained VGG16 [Simonyan and Zisserman, 2015], similar
to Wu et al. [2020]. While pixel-wise losses are common for autoencoders, we found it crucial
to add a perceptual loss to learn textures that are discriminative for the pose estimation. Our full
reconstruction loss can be written Lrec(I, Î) = Lpix(I, Î)+λpercLperc(I, Î) and we use λperc = 10
in all experiments. While our deformation-based surface parametrization naturally regularizes
the shape, we sometimes observe bad minima where the surface has folds. Following prior
works [Liu et al., 2019; Chen et al., 2019b; Goel et al., 2020; Zhang et al., 2021a], we thus add a
small regularization term Lreg = Lnorm + Llap consisting of a normal consistency loss [Desbrun
et al., 1999] Lnorm and a Laplacian smoothing loss [Nealen et al., 2006] Llap.

Progressive conditioning. The goal of progressive conditioning is to encourage the model
to share elements (e.g., shape, texture, background) across instances to prevent degenerate
solutions. Inspired by the curriculum learning philosophy [Elman, 1993; Wang et al., 2018;
Monnier et al., 2020], we propose to do so by gradually increasing the latent space representing
the shape, texture and background. Intuitively, restricting the latent space implicitly encourages
maximizing the information shared across instances. For example, a latent space of dimension
0 (i.e., no conditioning) amounts to learning a global representation that is the same for all
instances, while a latent space of dimension 1 restricts all the generated shapes, textures or
backgrounds to lie on a 1-dimensional manifold. Progressively increasing the size of the
latent code during training can be interpreted as gradually specializing from category-level to
instance-level knowledge. Figure 5.2a illustrates the procedure with example results where
we can observe the progressive specialization to particular instances: reactors gradually ap-
pear/disappear, textures get more accurate. Because common neural network implementations
have fixed-size inputs, we implement progressive conditioning by masking, stage-by-stage, a
decreasing number of values of the latent code. All our experiments share the same 4-stage
training strategy where the latent code dimension is increased at the beginning of each stage
and the network is then trained until convergence. We use dimensions 0/2/8/64 for the shape
code, 2/8/64/512 for the texture code and 4/8/64/256 for the background code. We provide
real-image results for each stage in Appendix C.2.
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Neighbor reconstruction. The idea behind neighbor reconstruction is to explicitly enforce
consistency between different instances. Our key assumption is that neighboring instances with
similar shape or texture exist in the dataset. If such neighbors are correctly identified, switching
their shape or texture in our generation model should give similar reconstruction results. For a
given input image, we hence propose to use its shape or texture attribute in the image formation
process of neighboring instances and apply our reconstruction loss on associated renderings.
Intuitively, this process can be seen as mimicking a multi-view supervision without actually
having access to multi-view images by finding neighboring instances in well-designed latent
spaces. Figure 5.2b illustrates the procedure with an example.

More specifically, let {zsh, ztx, a, zbg} be the parameters predicted by our encoder for a
given input training image I, let # be a memory bank storing the images and parameters of
the last M instances processed by the network. We write #(m) = {I

(m), z
(m)
sh , z

(m)
tx , a

(m), z
(m)
bg } each

of these M instances and associated parameters. We first select the closest instance from the
memory bank # in the texture (respectively shape) code space using the L2 distance, mt =
argminm ↗ztx ↔z

(m)
tx ↗2 (respectively ms = argminm ↗zsh ↔z

(m)
sh ↗2). We then swap the codes and

generate the reconstruction Î
(mt)
tx (respectively Î

(ms)
sh ) using the parameters {z

(mt)
sh , ztx, a

(mt), z
(mt)
bg }

(respectively {zsh, z
(ms)
tx , a

(ms), z
(ms)
bg }). Finally, we compute the reconstruction loss between the

images I
(mt) and Î

(mt)
tx (respectively I

(ms) and Î
(ms)
sh ). Our full loss can thus be written:

Lnbr = Lrec(I(mt), Î
(mt)
tx ) + Lrec(I(ms), Î

(ms)
sh ). (5.2)

Note that we recompute the parameters of the selected instances with the current network state,
to avoid uncontrolled effects of changes in the network state. Also note that, for computational
reasons, we do not use this loss in the first stage where codes are almost the same for all
instances.

To prevent latent codes from specializing by viewpoint, we split the viewpoints into V bins
w.r.t. the rotation angle, uniformly sample a target bin for each input and look for the nearest
instances only in the subset of instances within the target viewpoint range (see Appendix C.2
for details). In all experiments, we use V = 5 and a memory bank of size M = 1024.

5.3.3 Alternate 3D and pose learning

Because predicting 6D poses is hard due to self-occlusions and local minima, we follow prior
works [Insafutdinov and Dosovitskiy, 2018; Henderson and Ferrari, 2019; Goel et al., 2020;
Tulsiani et al., 2020] and predict multiple pose candidates and their likelihood. However,
we identify failure modes in their optimization framework (detailed in Appendix C.2) and
instead propose a new optimization that alternates between 3D and pose learning. More
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specifically, given an input image I, we predict K pose candidates {(r1, t1), . . . , (rK , tK)},
and their associated probabilities p1:K . We render the model from the different poses, yielding
K reconstructions Î1:K . We then alternate the learning between two steps: (i) the 3D-step
where shape, texture and background branches of the network are updated by minimizing L3D

using the pose associated to the highest probability, and (ii) the P-step where the branches
of the network predicting candidate poses and their associated probabilities are updated by
minimizing:

LP = ∑
k pkLrec(I, Îk) + λuniLuni, (5.3)

where Lrec is the reconstruction loss described in Section 5.3.2, Luni is a regularization loss
on the predicted poses and λuni is a scalar hyperparameter. More precisely, we use Luni =
∑

k |p̄k↔1/K| where p̄k is the averaged probabilities for candidate k in a particular training batch.
Similar to Henderson and Ferrari [2019], we found it crucial to introduce this regularization
term to encourage the use of all pose candidates. In particular, this prevents a collapse mode
where only few pose candidates are used. Note that we do not use the neighbor reconstruction
loss nor the mesh regularization loss which are not relevant for viewpoints. In all experiments,
we use λuni = 0.02.

Inspired by the camera multiplex of Goel et al. [2020], we parametrize rotations with
the classical Euler angles (azimuth, elevation and roll) and rotation candidates correspond to
offset angles w.r.t. reference viewpoints. Since in practice elevation has limited variations, our
reference viewpoints are uniformly sampled along the azimuth dimension. Note that compared
to Goel et al. [2020], we do not directly optimize a set of pose candidates per training image,
but instead learn a set of K predictors for the entire dataset. We use K = 6 in all experiments.

5.4 Experiments

We validate our approach in two standard setups. It is first quantitatively evaluated on ShapeNet
where state-of-the-art methods use multiple views as supervision. Then, we compare it on
standard real-image benchmarks and demonstrate its applicability to more complex datasets.
Finally, we present an ablation study.

5.4.1 Evaluation on the ShapeNet benchmark

We compare our approach to state-of-the-art methods using multi-views, viewpoints and
silhouettes as supervision. Our method is instead learned without supervision. For all compared
methods, one model is trained per class. We adhere to community standards [Kato et al.,
2018; Liu et al., 2019; Niemeyer et al., 2020] and use the renderings and splits from Kato
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et al. [2018] of the ShapeNet dataset [Chang et al., 2015]. It corresponds to a subset of 13
classes of 3D objects, each object being rendered into a 64 → 64 image from 24 viewpoints
uniformly spaced along the azimuth dimension. We evaluate all methods using the standard
Chamfer-L1 distance [Mescheder et al., 2019; Niemeyer et al., 2020], where predicted shapes
are pre-aligned using our gradient-based version of the Iterative Closest Point (ICP) [Besl and
McKay, 1992] with anisotropic scaling. Indeed, compared to competing methods having access
to the ground-truth viewpoint during training, we need to predict it for each input image in
addition to the 3D shape. This yields to both shape/pose ambiguities (e.g., a small nearby object
or a bigger one far from the camera) and small misalignment errors that dramatically degrade
the performances. We provide evaluation details as well as results without ICP in Appendix C.3.

We report quantitative results and compare to the state of the art in Table 5.2, where
methods using multi-views are visually separated. We evaluate the pre-trained weights for SDF-
SRN [Lin et al., 2020a] and train the models from scratch using the official implementation for
DVR [Niemeyer et al., 2020]. We tried evaluating SMR [Hu et al., 2021] but could not reproduce
the results. We do not compare to TARS [Duggal and Pathak, 2022] which is based on SDF-
SRN and share the same performances. Our approach achieves results that are on average better
than the state-of-the-art methods supervised with silhouette and viewpoint annotations. This
is a strong result: while silhouettes are trivial in this benchmark, learning without viewpoint
annotations is extremely challenging as it involves solving the pose estimation and shape
reconstruction problems simultaneously. For some categories, our performances are even better
than DVR supervised with multiple views. This shows that our system learned on raw images
generates 3D reconstructions comparable to the ones obtained from methods using geometry
cues like silhouettes and multiple views. Note that for the lamp category, our method predicts
degenerate 3D shapes; we hypothesize this is due to their rotation invariance which makes the
viewpoint estimation ambiguous.

We visualize and compare the quality of our 3D reconstructions in Figure 5.5. The first
three examples correspond to examples advertised in DVR [Niemeyer et al., 2020], the last two
corresponds to examples we selected. Our method generates textured meshes of high-quality
across all these categories. The geometry obtained is sharp and accurate, and the predicted
texture mostly corresponds to the input.

5.4.2 Results on real images

Pascal3D+ Car and CUB benchmarks. We compare our approach to state-of-the-art SVR
methods on real images, where multiple views are not available. All competing methods use
silhouette supervision and output meshes that are symmetric. CMR [Kanazawa et al., 2018]
additionally use keypoints, UCMR [Goel et al., 2020] and IMR [Tulsiani et al., 2020] starts
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Method Ours SDF-SRN DVR DVR
MV ⊜

CK ⊜ ⊜ ⊜

S ⊜ ⊜ ⊜

airplane 0.110 0.128 0.114 0.111
bench 0.159 - 0.255 0.176
cabinet 0.137 - 0.254 0.158
car 0.168 0.150 0.203 0.153
chair 0.253 0.262 0.371 0.205
display 0.220 - 0.257 0.163
lamp 0.523 - 0.363 0.281
phone 0.127 - 0.191 0.076
rifle 0.097 - 0.130 0.083
sofa 0.192 - 0.321 0.160
speaker 0.224 - 0.312 0.215
table 0.243 - 0.303 0.230
vessel 0.155 - 0.180 0.151
mean 0.201 - 0.250 0.166

Table 5.2: ShapeNet comparison. We report
Chamfer-L1 ↙ obtained after ICP, best results
are highlighted. Supervisions are: Multi-Views,
Camera or Keypoints, Silhouettes.

Figure 5.5: Visual comparisons. We com-
pare to DVR [Niemeyer et al., 2020] and
SoftRas [Liu et al., 2019] learned with full
supervision (MV, CK, S).

learning from a given template shape; we do not use any of these and directly learn from
raw images. We strictly follow the community standards [Kanazawa et al., 2018; Goel et al.,
2020; Tulsiani et al., 2020] and use the train/test splits of Pascal3D+ Car [Xiang et al., 2014]
(5000/220 images) and CUB-200-2011 [Welinder et al., 2010] (5964/2874 images). Images are
square-cropped around the object using bounding box annotations and resized to 64 → 64.

A quantitative comparison is summarized in Table 5.3, where we report 3D IoU, Chamfer-
L1 (with ICP alignment), Mask IoU for Pascal3D+ Car, and Percentage of Correct Keypoints
thresholded at φ = 0.1 (PCK@0.1) [Kulkarni et al., 2019], Mask IoU for CUB. Our approach
yields competitive results across all metrics although it does not rely on any supervision used by
other works. On Pascal3D+ Car, we achieve significantly better results than UCMR for Chamfer-
L1 and Mask IoU, which we argue are less biased metrics than the standard 3D IoU [Tulsiani
et al., 2017b; Kanazawa et al., 2018] computed on unaligned shapes (see Appendix C.3). On
CUB, our approach achieves reasonable results that are however slightly worse than the state of
the art. We hypothesize this is linked to our pose regularization term encouraging the use of all
viewpoints whereas these bird images clearly lack back views.

We qualitatively compare our approach to the state of the art in Figure 5.6. For each input,
we show the mesh rendered from two viewpoints. For our car results, we additionally show
meshes with synthetic textures to emphasize correspondences. Qualitatively, our approach
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Supervision Pascal3D+ Car CUB-200-2011

Method CK S A 3D IoU ⇑ Ch-L1 ⇓ Mask IoU ⇑ PCK@0.1 ⇑ Mask IoU ⇑

CMR [Kanazawa et al., 2018] ⊜ ⊜ ⊜ 64 - - 48.3 70.6
IMR [Tulsiani et al., 2020] ⊜ ⊜ - - - 53.5 -
UMR [Li et al., 2020] ⊜ ⊜ 62 - - 58.2 73.4
UCMR [Goel et al., 2020] ⊜ ⊜ 67.3 0.172 73.7 - 63.7
SMR [Hu et al., 2021] ⊜ ⊜ - - - 62.2 80.6
Ours 65.9 0.163 83.9 49.0 71.4

Table 5.3: Real-image quantitative comparisons. Supervision corresponds to Camera or Keypoints,
Silhouettes, Assumptions (see Table 5.1 for details).

Figure 5.6: Real-image comparisons. We show reconstructions on Pascal3D+ Cars (top) and CUB
(bottom) and compare to CMR [Kanazawa et al., 2018], IMR [Tulsiani et al., 2020], UCMR [Goel et al.,
2020].

yields results on par with prior works both in terms of geometric accuracy and overall realism.
Although the textures obtained in Tulsiani et al. [2020] look more accurate, they are modeled
as pixel flows, which has a clear limitation when synthesizing unseen texture parts. Note that
we do not recover details like the bird legs which are missed by prior works due to coarse
silhouette annotations. We hypothesize we also miss them because they are hardly consistent
across instances, e.g., legs can be bent in multiple ways.

Real-word datasets. Motivated by 3D-aware image synthesis methods that are learned in-
the-wild [Nguyen-Phuoc et al., 2019; Niemeyer and Geiger, 2021], we investigate whether our
approach can be applied to real-world datasets where silhouettes are not available and images
are not methodically cropped around the object. We adhere to standards from the 3D-aware
image synthesis community [Nguyen-Phuoc et al., 2019; Niemeyer and Geiger, 2021] and
apply our approach to 64 → 64 images of CompCars [Yang et al., 2015]. In addition, we provide
results for the more difficult scenario of LSUN images [Yu et al., 2016] for motorbikes and
horses. Because many LSUN images are noise, we filter the datasets as follows: we manually
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(a) CompCars [Yang et al., 2015] (b) LSUN Motorbike and Horse [Yu et al., 2016]

Figure 5.7: Real-world dataset results. From left to right, we show: input and output images, the
predicted mask, a correspondence map and the mesh rendered from 3 viewpoints. Note that for LSUN
Horse, the geometry quality is low and outlines our approach limitations (see text). Best viewed digitally.

select 16 reference images with different poses, find the nearest neighbors from the first 200k
images in a pre-trained ResNet-18 [He et al., 2016] feature space, and keep the top 2k for each
reference image. We repeat the procedure with flipped reference images yielding 25k images.

Our results are shown in Figure 5.7. For each input image, we show from left to right: the
output image, the predicted mask, a correspondence map, and the 3D reconstruction rendered
from the predicted viewpoint and two other viewpoints. Although our approach is trained
to synthesize images, these are all natural by-products. While the quality of our 3D car
reconstructions is high, the reconstructions obtained for LSUN images lack some realism and
accuracy (especially for horses), thus outlining limitations of our approach. However, our
segmentation and correspondence maps emphasize our system ability to accurately localize the
object and find correspondences, even when the geometry is coarse.

Limitations. Even if our approach is a strong step towards generic unsupervised SVR, we
can outline three main limitations. First, the lack of different views in the data harms the
results (e.g., most CUB birds have concave backs); this can be linked to our uniform pose
regularization term which is not adequate in these cases. Second, complex textures are not
predicted correctly (e.g., motorbikes in LSUN). Although we argue it could be improved by
more advanced autoencoders, the neighbor reconstruction term may prevent unique textures to
be generated. Finally, despite its applicability to multiple object categories and diverse datasets,
our multi-stage progressive training is cumbersome and an automatic way of progressively
specializing to instances is much more desirable.
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Model Full w/o w/o
Lnbr PC

airplane 0.110 0.124 0.107
bench 0.159 0.188 0.206
car 0.168 0.179 0.173
chair 0.253 0.319 0.527
table 0.243 0.246 0.598

mean 0.187 0.211 0.322

Table 5.4: Ablation results on
ShapeNet [Chang et al., 2015].

Figure 5.8: Ablation visual results. For each input, we
show the mesh rendered from two viewpoints.

5.4.3 Ablation study

We analyze the influence of our neighbor reconstruction loss Lnbr and progressive conditioning
(PC) by running experiments without each component.

First, we provide quantitative results on ShapeNet in Table 5.4. When Lnbr is removed,
the results are worse for almost all categories, outlining that it is important to the predicted
geometry accuracy. When PC is removed, results are comparable to the full model for airplane
and car but much worse for chair and table. Indeed, they involve more complex shapes and our
system falls into a bad minimum with degenerate solutions, a scenario that is avoided with PC.

Second, we perform a visual comparison on ShapeNet and CompCars examples in Fig-
ure 5.8. For each input, we show the mesh rendered from the predicted viewpoint and a
different viewpoint. When Lnbr is removed, we observe that the reconstruction seen from the
predicted viewpoint is correct but it is either wrong for chairs and degraded for cars when seen
from the other viewpoint. Indeed, the neighbor reconstruction explicitly enforces the unseen
reconstructed parts to be consistent with other instances. When PC is removed, we observe
degenerate reconstructions where the object seen from a different viewpoint is not realistic.

5.5 Conclusion

We presented UNICORN, an unsupervised SVR method which, in contrast to all prior works,
learns from raw images only. We demonstrated it yields high-quality results for diverse shapes
as well as challenging real-world image collections. This was enabled by two key contributions
aiming at leveraging consistency across different instances: our progressive conditioning
training strategy and neighbor reconstruction loss. We believe our work includes both an
important step forward for unsupervised SVR and the introduction of a valuable conceptual
insight.





Chapter 6

Differentiable Blocks World

Input Output

(a) Prior 3D-based works

Input Optimized textured 3D primitives

(b) Our proposed approach

(c) Application: physics-based simulations

Figure 6.1: Differentiable Blocks World. (a) Prior works fit primitives to point clouds and typically fail
for real data where ground-truth point clouds are extremely noisy and incomplete. (b) We propose using
calibrated multi-view images instead and simultaneously tackle 3D decomposition and 3D reconstruction
by rendering learnable textured primitives in a differentiable manner. (c) Such a textured decomposition
is highly compact and user-friendly: it enables us to do physics-based simulations, e.g., throwing a ball
at the discovered primitives.

6.1 Introduction

Recent multi-view modeling approaches, building on Neural Radiance Fields [Mildenhall et al.,
2020], capture scenes with astonishing accuracy by optimizing a dense occupancy and color
model. However, they do not incorporate any notion of objects, they are not easily interpretable

81
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for a human user or a standard 3D modeling software, and they are not useful for physical
understanding of the scene. In fact, even though these approaches can achieve a high-quality
3D reconstruction, the recovered content is nothing but a soup of colorful particles! In contrast,
we propose an approach that recovers textured primitives, which are compact, actionable, and
interpretable.

More concretely, our method takes as input a collection of calibrated images of a scene,
and optimizes a set of primitive meshes parametrized by superquadrics [Barr, 1981] and their
UV textures to minimize a rendering loss. The approach we present is robust enough to work
directly from a random initialization. One of its key components is the optimization of a
transparency parameter for each primitive, which helps in dealing with occlusions as well as
handling varying number of primitives. This notably requires adapting standard differentiable
renderers to deal with transparency. We also show the benefits of using a perceptual loss, a
total variation regularization on the textures and a parsimony loss favoring the use of a minimal
number of primitives.

Our scene representation harks back to the classical Blocks World ideas [Roberts, 1963].
An important difference is that the Blocks World-inspired approaches are typically bottom-up,
leveraging low-level image features, such as edges [Roberts, 1963], super-pixels [Gupta et al.,
2010], or more recently learned features [Xiao et al., 2012; Kluger et al., 2021], to infer 3D
blocks. In contrast, we perform a direct top-down optimization of 3D primitives and texture
using a rendering loss, starting from a random initialization in the spirit of analysis-by-synthesis.
Unlike related works that fit primitives to 3D point clouds [Binford, 1971; Barr, 1981; Tulsiani
et al., 2017a; Li et al., 2019b; Wu et al., 2022; Liu et al., 2022; Loiseau et al., 2023] (Fig-
ure 6.1a), our approach, dubbed Differentiable Blocks World (or DBW), does not require any
3D reconstruction a priori but instead operates directly on a set of calibrated input images, lever-
aging photometric consistency across different views (Figure 6.1b). This makes our approach
more robust since methods based on 3D are very sensitive to noise in the reconstructions and
have difficulties dealing with incomplete objects. Our setting is similar to existing NeRF-like
approaches, but our model is able to recover a significantly more interpretable and parsimonious
representation. In particular, such an interpretable decomposition allows us to easily play with
the discovered scene, e.g., by performing physics-based simulations (Figure 6.1c). Code and
video results are available on our project webpage: www.tmonnier.com/DBW.

6.2 Approach

Given a set of N views I1:N of a scene associated with camera poses c1:N , our goal is to
decompose the 3D scene into geometric primitives that best explain the images. We explicitly

https://www.tmonnier.com/DBW
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Input (subset) Init Iter 200 Iter 1k Iter 10k Final Output

Figure 6.2: Overview. (top) We model the world as an explicit set of learnable textured meshes that are
assembled together in the 3D space. (bottom) Starting from a random initialization, we optimize such a
representation through differentiable rendering by photometric consistency across the different views.

model the scene as a set of transparent superquadric meshes, whose parameters, texture and
number are optimized to maximize photoconsistency through differentiable rendering. Note
that compared to recent advances in neural volumetric representations [Niemeyer et al., 2020;
Mildenhall et al., 2020; Yu et al., 2021], we do not use any neural network and directly optimize
meshes, which are straightforward to use in computer graphic pipelines.

Notations. We use bold lowercase for vectors (e.g., a), bold uppercase for images (e.g., A),
double-struck uppercase for meshes (e.g., A) and write a1:N the ordered set {a1, . . . , an}.

6.2.1 Parametrizing a world of blocks

We propose to represent the world scene as an explicit set of textured meshes positioned in the
3D space. Figure 6.2 summarizes our modeling and the parameters updated (top) during the
optimization (bottom). Specifically, we model each scene as a union of primitive meshes: (i) an
icosphere B modeling a background dome and centered on the scene, (ii) a plane G modeling
the ground, and (iii) K primitive blocks P1:K in the form of superquadric meshes, where K is
fixed and refers to a maximum number of blocks. Unless mentioned otherwise, we arbitrarly
use K = 10. We write the resulting scene mesh B ∝ G ∝ P1 ∝ . . . ∝ PK .
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The goal of the background dome is to model things far from the cameras that can be well
approximated with a planar surface at infinity. In practice, we consider an icosphere with a
fixed location and a fixed scale that is much greater than the scene scale. On the contrary, the
goal of the planar ground and the blocks is to model the scene close to the cameras. We thus
introduce rigid transformations modeling locations that will be updated during the optimization.
Specifically, we use the 6D rotation parametrization of Zhou et al. [2019] and associate to each
block k a pose pk = {rk, tk} ↑ IR9 such that every point of the block x ↑ IR3 is transformed
into world space by xworld = rot(rk)x + tk, where tk ↑ IR3, rk ↑ IR6 and rot maps a 6D
vector to a rotation matrix [Zhou et al., 2019]. Similarly, we associate a rigid transformation
pgr = {rgr, tgr} to the ground plane. We next describe how we model variable number of blocks
via transparency values and the parametrization of blocks’ shape and texture.

Block existence through transparency. Modeling a variable number of primitives is a
difficult task as it involves optimizing over a discrete random variable. Recent works tackle
the problem using reinforcement learning [Tulsiani et al., 2017a], probabilistic approxima-
tions [Paschalidou et al., 2019] or greedy algorithms [Monnier et al., 2021], which often yield
complex optimization strategies. In this work, we instead propose to handle variable number of
primitive blocks by modeling meshes that are transparent. Specifically, we associate to each
block k a learnable transparency value φk, parametrized with a sigmoid, that can be pushed
towards zero to change the effective number of blocks. Such transparencies are not only used
in our rendering process to softly model the blocks existence and occlusions (Section 6.2.2),
but also in regularization terms during our optimization, e.g., to encourage parsimony in the
number of blocks used (Section 6.2.3).

Superquadric block shape. We model blocks with superquadric meshes. Introduced by Barr
[1981] and revived recently by Paschalidou et al. [2019], superquadrics define a family of
parametric surfaces that exhibits a strong expressiveness with a small number of continuous
parameters, thus making a good candidate for primitive fitting by gradient descent. More con-
cretely, we derive a superquadric mesh from a unit icosphere. For each vertex of the icosphere,
its spherical coordinates ε ↑ [↔ε

2 , ε
2 ] and ▷ ↑ [↔ϑ, ϑ] are mapped to the superquadric surface

through the parametric equation [Barr, 1981]:

$(ε, ▷) =





s1 cosε1 ε cosε2 ▷

s2 sinε1 ε

s3 cosε1 ε sinε2 ▷



 , (6.1)
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where s = {s1, s2, s3} ↑ IR3 represents an anisoptropic scaling and e = {◁1, ◁2} ↑ IR2 defines
the shape of the superquadric. Both s and e are updated during the optimization process.
Note that by design, each vertex of the icosphere is mapped continuously to a vertex of the
superquadric mesh, so the icosphere connectivity - and thus the icosphere faces - is transferred
to the superquadric mesh.

Texturing model. We use texture mapping to model scene appearance. Concretely, we
optimize K + 2 texture images {Tbg, Tgr, T1:K} which are UV-mapped onto each mesh
triangle using pre-defined UV mappings. Textures for the background and the ground are
trivially obtained using respectively spherical coordinates of the icosphere and a simple plane
projection. For a given block k, each vertex of the superquadric mesh is associated to a vertex
of the icosphere. Therefore, we can map the texture image Tk onto the superquadric by first
mapping it to the icosphere using a fixed UV map computed with spherical coordinates, then
mapping the icosphere triangles to the superquadric ones (see Appendix D.3 for details).

6.2.2 Differentiable rendering

In order to optimize our scene parameters to best explain the images, we propose to leverage
recent mesh-based differentiable renderers [Liu et al., 2019; Chen et al., 2019b; Ravi et al.,
2020]. Similar to them, our differentiable rendering corresponds to the soft rasterization of the
mesh faces followed by a blending function. In contrast to existing mesh-based differentiable
renderers, we introduce the ability to account for transparency. Intuitively, our differentiable
rendering can be interpreted as an alpha compositing of the transparent colored faces of
the mesh. In the following, we write pixel-wise multiplication with ⇒ and the division of
image-sized tensors corresponds to pixel-wise division.

Soft rasterization. Given a 2D pixel location u, we model the influence of the face j projected
onto the image plane with the 2D occupancy function of Chen et al. [2019b] that we modify
to incorporate the transparency value φkj associated to this face. Specifically, we write the
occupancy function as:

O
2D
j (u) = φkj exp

(
min

(”j(u)
ϖ

, 0
))

, (6.2)

where ϖ is a scalar hyperparameter modeling the extent of the soft mask of the face and ”j(u)
is the signed Euclidean distance between pixel u and projected face j, such that ”j(u) < 0
if pixel u is outside face j and ”j(u) ′ 0 otherwise. We consider the faces belonging to the
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background and the ground to be opaque, i.e., use a transparency of 1 for all their faces in the
occupancy function.

Blending through alpha compositing. For each pixel, we find all projected faces with an
occupancy greater than a small threshold at this pixel location, and sort them by increasing
depth. Denoting by L the maximum number of faces per pixel, we build image-sized tensors
for occupancy Oϖ and color Cϖ by associating to each pixel the ↼-th intersecting face attributes.
The color is obtained through barycentric coordinates, using clipped barycentric coordinates
for locations outside the face. Different to most differentiable renderers and as advocated
by Monnier et al. [2022], we directly interpret these tensors as an ordered set of RGBA image
layers and blend them through traditional alpha compositing [Porter and Duff, 1984]:

C(O1:L, C1:L) =
L∑

ϖ=1

( L∏

p<ϖ

(1 ↔ Op)
)

⇒ Oϖ ⇒ Cϖ . (6.3)

We found this simple alpha composition to behave better during optimization than the original
blending function used in Liu et al. [2019]; Chen et al. [2019b]; Ravi et al. [2020]. This is
notably in line with recent advances in differentiable rendering like NeRF [Mildenhall et al.,
2020] which can be interpreted as alpha compositing points along the rays.

6.2.3 Optimizing a differentiable blocks world

We optimize our scene parameters by minimizing a rendering loss across batches of images
using gradient descent. Specifically, for each image I, we build the scene mesh as described
in Section 6.2.1 and use the associated camera pose to render an image Î using the rendering
process detailed in Section 6.2.2. We optimize an objective function defined as:

L = Lrender + λparsiLparsi + λTVLTV + λoverLover , (6.4)

where Lrender is a rendering loss between I and Î, λparsi, λTV, λover are scalar hyperparameters
and Lparsi, LTV, Lover are regularization terms respectively encouraging parsimony in the use
of primitives, favoring smoothness in the texture maps and penalizing the overlap between
primitives. Our rendering loss is composed of a pixel-wise MSE loss LMSE and a perceptual
LPIPS loss [Zhang et al., 2018] Lperc such that Lrender = LMSE + λpercLperc. In all experiments,
we use λparsi = 0.01, λperc = λTV = 0.1 and λover = 1. Figure 6.2 (bottom) shows the evolution
of our renderings throughout the optimization.
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Encouraging parsimony and texture smoothness. We found that regularization terms were
critical to obtain meaningful results. In particular, the raw model typically uses the maximum
number of blocks available to reconstruct the scene, thus over-decomposing the scene. To adapt
the number of blocks per scene and encourage parsimony, we use the transparency values as a
proxy for the number of blocks used and penalize the loss by Lparsi = ∑

k
⇔

ϑk/K. We also use
a total variation (TV) penalization [Rudin and Oshe, 1994] on the texture maps to encourage
uniform textures. Given a texture map T of size U → V and denoting by T[u, v] ↑ IR3 the
RGB values of the pixel at location (u, v), we define:

Ltv(T) = 1
UV

∑

u,v

(∥∥∥T[u + 1, v] ↔ T[u, v]
∥∥∥

2

2
+

∥∥∥T[u, v + 1] ↔ T[u, v]
∥∥∥

2

2

)
, (6.5)

and write LTV = Ltv(Tbg) + Ltv(Tgr) + ∑
k Ltv(Tk) the final penalization.

Penalizing overlapping blocks. We introduce a regularization term encouraging primitives
to not overlap. Because penalizing volumetric intersections of superquadrics is difficult and
computationally expensive, we instead propose to use a Monte Carlo alternative, by sampling
3D points in the scene and penalizing points belonging to more than λ blocks, in a fashion
similar to Paschalidou et al. [2021]. Following Paschalidou et al. [2021], λ is set to 1.95 so
that blocks could slightly overlap around their surface thus avoiding unrealistic floating blocks.
More specifically, considering a block k and a 3D point x, we define a soft 3D occupancy
function O

3D
k as:

O
3D
k (x) = φk sigmoid

(1 ↔ %k(x)
0

)
, (6.6)

where 0 is a temperature hyperparameter and %k is the superquadric inside-outside func-
tion [Barr, 1981] associated to the block k, such that %k(x) ∞ 1 if x lies inside the superquadric
and %k(x) > 1 otherwise. Given a set of M 3D points #, our final regularization term can be
written as:

Lover = 1
M

∑

x↓#
max

( K∑

k=1
O

3D
k (x), λ

)
. (6.7)

Note that in practice, for better efficiency and accuracy, we only sample points in the region
where blocks are located, which can be identified using the block poses p1:K .

Optimization details. We found that two elements were key to avoid bad local minima
during optimization. First, while transparent meshes enable differentiability w.r.t. the number
of primitives, we observed a failure mode where two semi opaque meshes model the same 3D
region. To prevent this behavior, we propose to inject gaussian noise before the sigmoid in the
transparencies φ1:K to create stochasticity when values are not close to the sigmoid saturation,
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Chamfer Distance (CD) per scene Mean Mean

Method Input S24 S31 S40 S45 S55 S59 S63 S75 S83 S105 CD #P

EMS [Liu et al., 2022] 3D 6.77 5.93 3.36 6.91 6.52 3.50 4.72 7.08 7.25 6.10 5.82 7.4
MBF [Ramamonjisoa et al., 2022] 3D 3.73 4.79 4.31 3.95 3.26 4.00 3.66 3.92 3.97 4.25 3.98 16.4
Ours (random) Img 5.41 3.13 1.57 4.93 3.08 3.66 3.40 2.78 3.94 4.85 3.67 4.6
Ours (auto) Img 3.25 3.13 1.16 3.02 2.98 2.32 3.40 2.78 3.43 5.21 3.07 5.0

EMS [Liu et al., 2022] + ps 3D 6.32 4.11 2.98 4.94 4.26 3.03 3.60 5.44 3.24 4.43 4.23 8.3
MBF [Ramamonjisoa et al., 2022] + ps 3D 3.35 2.95 2.61 2.19 2.53 2.47 1.97 2.60 2.60 3.27 2.65 29.9

Table 6.1: Quantitative results on DTU. We use the official DTU evaluation to report Chamfer
Distance (CD) between 3D reconstruction and ground-truth, best results are highlighted. We also
highlight the average number of primitives found (#P) in green (smaller than 10) or red (larger than 10).
Our performances correspond to a single random run (random) and a run automatically selected among
5 runs using the minimal rendering loss (auto). We augment concurrent methods with a preprocessing
step (+ ps) removing the ground from the 3D input.

and thus encourage values that are close binary. Second, another failure mode we observed
is one where the planar ground is modeling the entire scene. We avoid this by leveraging a
two-stage curriculum learning scheme, where texture maps are downscaled by 8 during the
first stage. We empirically validate these two contributions in Section 6.3.3. Optimizing our
model on a scene takes 4 hours on a single NVIDIA RTX 2080 Ti GPU. We provide all other
implementation details in Appendix D.3.

6.3 Experiments

6.3.1 DTU benchmark

Benchmark details. DTU [Jensen et al., 2014] is an MVS dataset containing 80 forward-
facing scenes captured in a controlled indoor setting, where the 3D ground-truth points are
obtained through a structured light scanner. We evaluate on 10 scenes (S24, S31, S40, S45,
S55, S59, S63, S75, S83, S105) that have different geometries and a 3D decomposition
that is relatively intuitive. We use standard processing practices [Yariv et al., 2020, 2021;
Darmon et al., 2022], resize the images to 400 → 300 and run our model with K = 10 on
all available views for each scene (49 or 64 depending on the scenes). We use the official
evaluation presented in Jensen et al. [2014], which computes the Chamfer distance between
the ground-truth points and points sampled from the 3D reconstruction, filtered out if not in
the neighborhood of the ground-truth points. We use the official implementations to apply
EMS [Liu et al., 2022] and MonteboxFinder (MBF) [Ramamonjisoa et al., 2022] on the
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ground-truth point clouds and follow the papers’ recommendations (normalization, default
hyperparameters).

Results. We compare our Chamfer distance performances to state-of-the-art 3D decompo-
sition methods in Table 6.1. For each method, we report the input used and highlight the
average number of discovered primitives #P in green (smaller than 10) or red (larger than 10).
Intuitively, overly large numbers of primitives lead to less intuitive and manipulative scene
representations. Our performances correspond to a single random run (random) and a run
automatically selected among 5 runs using the minimal rendering loss (auto). We augment
concurrent methods with a preprocessing step (+ ps) using RANSAC to remove the planar
ground from the 3D input. Overall, we obtain results that are much more satisfactory than
prior works. On the one hand, EMS outputs a reasonable number of primitives but has a
high Chamfer distance reflecting bad 3D reconstructions. On the other hand, MBF yields a
lower Chamfer distance (even better than ours with the preprocessing step) but it outputs a
significantly higher number of primitives, thus reflecting over-decompositions.

Our approach is qualitatively compared to EMS and MBF (augmented with the preprocess-
ing step) in Figure 6.3. Because the point clouds are noisy and incomplete (see 360→ renderings
in Appendix D.2), EMS and MBF struggle to find reasonable 3D decompositions: EMS misses
some important parts, while MBF over-decomposes the 3D into piecewise planar surfaces. On
the contrary, our model is able to output meaningful 3D decompositions with varying numbers
of primitives and very different shapes. Besides, ours is the only approach that recovers the
scene appearance (last column). Also note that it produces a complete 3D scene, despite being
only optimized on forward-facing views.

6.3.2 Real-life data and applications

We present qualitative results on real-life captures in Figure 6.4. The first row corresponds to
the Campanile scene from Nerfstudio repository [Tancik et al., 2023] and the last four rows
correspond to BlendedMVS scenes [Yao et al., 2020] that were selected in Yariv et al. [2021].
We adapt their camera conventions to ours and resize the images to roughly 400 → 300. From
left to right, we show a subset of the input views, a rendering overlaid with the primitive edges,
the primitives, as well as two novel view synthesis results. For each scene, we run our model 5
times and automatically select the results with the minimal rendering loss. We set the maximum
number of primitives to K = 10, except the last row where it is increased to K = 50 due to the
scene complexity. These results show that despite its simplicity, our approach is surprisingly
robust. Our method is still able to compute 3D decompositions that capture both appearances
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Input view GT point cloud EMS MBF Ours Ours rendering

Figure 6.3: Qualitative comparisons on DTU. We compare our model to state-of-the-art methods
(augmented with a preprocessing step to remove the 3D ground) which, unlike ours, find primitives in
the ground-truth point cloud that is noisy and incomplete. Additionally, our approach is the only one
able to capture the scene appearance (last column).

and meaningful geometry on a variety of scene types. In addition, increasing the maximum
number of primitives K allows us to easily adapt the decomposition granularity (last row).

In Figure 6.5, we demonstrate other advantages of our approach. First, compared to NeRF-
based approaches like Nerfacto [Tancik et al., 2023] which only reconstruct visible regions,
our method performs amodal scene completion (first row). Second, such a textured decompo-
sition allows to easily edit the 3D scene (second row). Finally, our primitive meshes enable
straightforward physics-based simulations (bottom).
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Input (subset) Rendering Output Novel views rendering Novel views output

Figure 6.4: Qualitative results on real-life data. We run our default model (K = 10) on scenes from
Nerfstudio [Tancik et al., 2023] (first row) and BlendedMVS [Yao et al., 2020] (all other rows). The last
row corresponds to results where the maximum number of primitives is increased to K = 50, yielding
17 effective primitives found.

6.3.3 Analysis

Ablation study on DTU. In Table 6.2, we assess our model’s key components by removing
one component at a time and computing the performance averaged over the 10 DTU scenes.
We report the final number of primitives, Chamfer distance and rendering metrics. We highlight
the varying number of primitives in green (smaller than 5) and red (larger than 5). Results
are averaged over five runs with standard deviations. Overall, each component except Lparsi

consistently improves the quality of the 3D reconstruction and the renderings. Lparsi successfully
limits the number of primitives (and thus, primitive duplication and over-decomposition) at a
very small quality cost.

Limitations. Despite its simplicity and robustness, our approach has some limitations. First,
our optimization is still prone to bad local minima. Although our automatic selection among
several runs is effective, introducing data-driven priors to overcome such local minima would
be an interesting future direction. Second, our texturing model does not adapt to the scene
geometry thus yielding efficiency and resolution issues. Indeed, large regions in the renderings
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Input (subset) Amodal view synthesis - Nerfacto Amodal view synthesis - Ours

Input (subset) Scene editing - Removing ears Scene editing - Moving arm

Figure 6.5: Applications. Amodal completion (1st row), scene editing (2nd) and physics-based
simulations like throwing a ball or pouring water (bottom).

do not necessarily correspond to large regions in the texture images. Finally, our approach does
not model lighting or dynamic objects.

6.4 Conclusion

We present an end-to-end approach that successfully computes a primitive-based 3D reconstruc-
tion given a set of calibrated images. We show its applicability and robustness through various
benchmarks, where our approach obtains better performances than methods leveraging 3D
data. We believe our work could be an important step towards more interpretable multi-view
modeling.



6.4. CONCLUSION 93

Method #P ↙ CD ↙ PSNR ∈ SSIM ∈ LPIPS ↙

Complete model 4.60 ± 0.23 3.63 ± 0.23 20.5 ± 0.2 73.5 ± 0.6 23.9 ± 0.5
w/o Lparsi 8.86 ± 0.27 3.65 ± 0.22 20.6 ± 0.1 73.7 ± 0.4 23.2 ± 0.4
w/o Lover 4.38 ± 0.19 3.80 ± 0.30 20.4 ± 0.3 73.2 ± 0.7 24.1 ± 0.7
w/o curriculum 4.66 ± 0.30 3.99 ± 0.17 20.4 ± 0.2 72.7 ± 0.5 24.5 ± 0.4
w/o noise in ϑ1:K 3.60 ± 0.21 4.13 ± 0.28 20.0 ± 0.2 72.0 ± 0.6 25.6 ± 0.6
w/o LTV 4.04 ± 0.18 4.58 ± 0.42 19.7 ± 0.3 70.8 ± 1.3 26.5 ± 1.2
w/o Lperc 3.22 ± 0.17 4.80 ± 0.20 19.7 ± 0.1 72.7 ± 0.3 40.0 ± 0.4

Table 6.2: Ablation study on DTU. We report metrics averaged over five runs: number of primitives
(#P), Chamfer Distance (CD) and rendering metrics (PSNR in dB and SSIM, LPIPS in %). Best and
second best are highlighted, #P variability is emphasized in green (smaller than 5) and red (larger than
5).





Chapter 7

Conclusion

In conclusion, we summarize the contributions presented in this manuscript and present future
works related to our contributions to unsupervised image analysis.

7.1 Contributions summary

We have presented three key contributions and the effectiveness of each contribution has been
demonstrated for at least two different image analysis problems, typically related to both 2D
and 3D perception.

Object class modeling with prototypes and deep transformations. We have introduced a
new object class modeling approach which represents the class of an image, a 2D object or a 3D
shape, with a prototype that is transformed using deep learning to model the different instances.
This conceptual idea has first been presented in Chapter 3 in the context of image clustering
and it has allowed us to turn a failing K-means algorithm into a state-of-the-art method
performing clustering in an interpretable manner. In particular, compared to feature-based
analysis, our synthesis-based method enables the end user to understand how and why images
are grouped together, by simply visualizing the prototypes and the predicted transformations.
Then, we have demonstrated the applicability of this idea to 3D shape modeling in Chapter 5 by
computing prototypes and transformations in 3D. Specifically, it has allowed us to design the
most unsupervised SVR system at the date of the work publication and to demonstrate results
on par with more supervised approaches for diverse datasets.

Discovery by composition of learnable elements. We have proposed a new way to discover
elements in images by representing an image collection with a set of learnable elements
composed together to synthesize the images and updated by gradient descent. This idea has
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first been introduced in Chapter 4 to discover recurrent objects in the image collection. In
this chapter, learnable elements are modeled as a small dictionary of sprites which are alpha
composited together to synthesize the images. We have not only demonstrated results on par
with the best concurrent methods generating images with neural networks, but we have also
emphasized how our approach provides much more interpretability. Then, this idea has been
applied in Chapter 6 to discover 3D elements from a collection of multi-view images depicting
a scene. In this chapter, learnable elements are modeled as textured primitive meshes which
are composed together to generate the final scene. We have demonstrated the superiority of
our rendering-based approach over prior state-of-the-art methods fitting primitives in 3D point
clouds, both in terms of reconstruction performances and applicability to real-world scenarios.

Advances in mesh-based differentiable rendering. We have presented a more technical
contribution related a new differentiable mesh rendering which can be formulated as the alpha
compositing of the mesh faces in an increasing depth order. We have developed this formulation
in Chapter 5 and it has enabled us to learn an SVR model without silhouette annotations, which
has not been demonstrated before by prior mesh-based works. Besides, we have demonstrated
the applicability of such a formulation in Chapter 6 by introducing the possibility to optimize
meshes that are transparent in a seamless manner. In particular, it has allowed us to design a
model of a scene as a composition of a variable number of meshes.

7.2 Future works

Our contributions to unsupervised image analysis open interesting research directions that
remain unsolved. We discuss three examples of future works based on our contributions.

Class modeling - Application to other modalities. Our object class modeling formulated
in Chapter 3 and based on prototypes and deep transformations is a conceptual approach
that can be applied to other modalities. We have introduced the general formulation in the
context of image modeling and its effectiveness has been demonstrated to learn 3D meshes
represented by images from the same object class. Yet, because such a framework does not rely
on strong assumptions on the input data, we believe it can be applied to other data modalities,
where samples of a same class can be approximated with meaningful transformations of a
prototypical instance. In particular, the works of Loiseau et al. [2021, 2022b]; Vincent et al.
[2023] successfully apply this idea to 3D data, audio signal and satellite time series respectively.
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Discovering object models in the wild. In Chapter 4, we have demonstrated that a 2D
modeling of objects can effectively be used to discover recurrent objects in toy datasets like
CLEVR and Tetrominoes. Even though we showcased results on real photographs from
Instagram collections, our 2D modeling only works for concepts that can be well approximated
by a prototypical image that is transformed, like the façade of a building. Hence, our approach
would fail to model common 3D objects presenting (i) strong geometry variations like chairs
or (ii) deformable parts like horses. Incorporating an explicit 3D object model as we have
proposed in Chapter 5 is one attempt to accurately model the 3D variations of such objects.
However, our approach works for particular image collections, where images represent a single
centered object reflecting the same object class. Although these ideas could be conceptually
extended to discover object models from unfiltered real-world image collections, modeling a
variable number of 3D objects per image poses clear optimization and computational issues. In
a sense, these issues were partially handled in our work in Chapter 6, which studies a much
simpler setting where we assume the access to multi-view images and where 3D objects are
modeled as semantic-free geometric primitives.

Another orthogonal but promising way to discover object models in the wild is the paradigm
of object-centric representation learning, which aims at decomposing an image into a set of
latent features, each implicitly associated to an object in the image. Ideally, objects reflecting
the same concept would be close to each other in the feature space. However, most works in
this direction like SlotAttention showcase results for synthetic images where object instances
are visually separated in a given image, but they typically do not study if the discovered objects
can be separated into meaningful concepts. This raises the question whether the model does not
simply learn to localize salient elements, without any recognition ability. Beyond its analytic
usefulness, being able to identify objects should actually help the model localize them: visually
separating a human riding bike seems much easier when the concepts of human and bike are
known. In addition, despite efforts from the most advanced works like Sharma et al. [2023], all
these approaches are still limited to synthetically generated images, and the reasons they fail on
real-world image collections are yet to be determined.

Reconstructing actionable complex 3D scenes. The approach we have proposed in Chapter 6
is a first step towards computing actionable 3D reconstructions, where 3D components are
identified and can be manipulated independently. Despite the variety of results we have
showcased, our approach mostly works for objects that are centered and isolated and it would
typically fail to capture complex yet common environments like a living room or an outdoor
street scene. One solution would be to initialize a much larger number of primitives - i.e., from
tens to several thousands primitives - which poses two critical issues in our current approach.
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First, it raises memory issues in particular linked with the optimization of a texture map for
each primitive. Second and most importantly, this assumption is orthogonal with the idea of
computing a parsimonious representation of a scene, where the number of 3D components found
is minimal. In a sense, this version of our approach can be related to the recent 3D Gaussian
Splatting work from Kerbl et al. [2023] (where ellipsoidal primitive meshes with spherical
harmonics are optimized instead of superquadric primitive meshes with texture maps) and one
could expect similar non-parsimonious decomposition results. For example, a raw plane would
likely be represented with hundreds of tiny primitives. Computing a 3D reconstruction with the
rendering fidelity of Kerbl et al. [2023] while maintaining a parsimonious and interpretable
representation is an interesting open direction.



Appendices

A Deep Transformation-Invariant Clustering

In this appendix, we provide details about the datasets (Appendix A.1), proof of transformation
invariance (Appendix A.2), as well as additional insights about our model (Appendix A.3).

A.1 Dataset descriptions

Table A.1 summarizes details about the following datasets:
• MNIST and MNIST-test [LeCun et al., 1998] which respectively correspond to full and

test subset of MNIST dataset. They depict binary white handwritten digits centered over
a black background.

• USPS [Hastie et al., 2001] is a handwritten digit dataset from USPS composed of
greyscale images.

• Fashion-MNIST [Xiao et al., 2017] is a 10-class clothing dataset composed of greyscale
images of cloth over black background. Classes are: T-shirt, trouser, pullover, dress, coat,
sandal, shirt, sneaker, bag, ankle boot.

• FRGC [Phillips et al., 2005] is a colored face dataset. We use a subset of this dataset
introduced in [Yang et al., 2016], where 20 subjects are selected and each image is
cropped and resized to a constant size of 32→32.

• SVHN [Netzer et al., 2011] is composed of digits extracted from house numbers cropped
from Google Street View images. Following standard practice for clustering, we use both
labeled samples (99,289) and unlabeled extra samples (~530k) for training and evaluate
on the labeled subset only.

• affNIST-test is the test split of affNIST (https://www.cs.toronto.edu/ tijmen/affNIST/)
an augmented dataset of MNIST where random affine transformations are applied.

• MNIST-1k: we randomly sampled 1,000 images from the test split of MNIST.
• MNIST-color: we augmented MNIST with random colors for background and fore-

ground.
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Dataset Samples Classes Dimension Transformation sequence

Standard
MNIST 70,000 10 1→28→28 aff-morpho-tps
MNIST-test 10,000 10 1→28→28 aff-morpho-tps
USPS 9,298 10 1→16→16 col-aff-tps
Fashion-MNIST 70,000 10 1→28→28 col-aff-tps
FRGC 2,462 20 3→32→32 col-aff-tps
SVHN 99,289 + unlabeled extra 10 3→28→28 col-proj

Augmented
MNIST-1k 1,000 10 1→28→28 aff-morpho-tps
MNIST-color 70,000 10 3→28→28 col-aff-tps
affNIST-test 320,000 10 1→40→40 aff-morpho-tps

Real photographs
All 1k to 15k - 3→128→128 col-proj

Table A.1: Datasets and transformation sequences used

A.2 Transformation invariance

We consider N image samples x1:N , K prototypes c1:K and a group of parametric transforma-
tions {Tω, ω ↑ B}. For ω1, ω2 ↑ B, we write ω1ω2 ↑ B the element such that Tω1ω2 = Tω1 ↘Tω2 .
We have, for any φ1, . . . , φK ↑ B:

LTI({c1, . . . , cK}) = LTI({Tϑ1(c1), . . . , TϑK (cK)}).

Indeed:

LTI({Tϑ1(c1), . . . , TϑK (cK)}) =
N∑

i=1
min

{ω1,...,ωK}↓BK
l(xi, {Tω1 ↘ Tϑ1(c1), . . . , TωK ↘ TϑK (cK)})

=
N∑

i=1
min

{ω1,...,ωK}↓BK
l(xi, {Tω1ϑ1(c1), . . . , TωKϑK (cK)})

=
N∑

i=1
min

{ω→
1,...,ω→

K}↓BK
l(xi, {Tω→

1
(c1), . . . , Tω→

K
(cK)})

= LTI({c1, . . . , cK}),

using the variable change ω↔
k = ωkφk, which is possible because for any φ ↑ B, φB = B as

we assumed to have a group of transformations.
In some specific cases, the loss is also invariant to the samples, in particular when the

loss l is invariant to joint transformation of the prototype and the samples, i.e. for any ω ↑ B,
l(xi, {c1, . . . , cK} = l(Tω(xi), {Tω(c1), . . . , Tω(cK)}. This is the case for example for K-means
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MNIST MNIST-test USPS F-MNIST FRGC SVHN

Method Runs Stat ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC

DTI K-means 10 avg 97.3 94.0 96.6 94.6 86.4 88.2 61.2 63.7 39.6 48.7 36.4 / 44.5⇀

10 std 0.1 0.1 4.1 1.5 4.1 1.6 2.0 0.3 1.7 2.2 1.9 / 9.6⇀

10 min 97.1 93.8 84.9 90.4 83.2 87.1 57.4 63.2 35.9 43.9 34.5 / 37.0⇀

10 median 97.3 94.0 97.9 95.1 85.0 87.4 61.9 63.3 40.2 49.3 35.8 / 39.6⇀

10 max 97.5 94.2 98.0 95.3 96.4 92.0 63.3 64.2 41.1 51.4 39.6 / 62.6⇀

10 minLoss 97.2 93.8 98.0 95.3 89.8 89.5 57.4 64.1 41.1 49.7 39.6 / 62.6⇀

DTI GMM 10 avg 95.9 93.2 97.8 94.7 84.5 87.2 59.6 62.2 40.1 48.9 36.7 / 57.4⇀

10 std 3.9 1.5 0.1 0.2 2.0 0.8 4.7 2.4 1.4 1.5 2.3 / 5.1⇀

10 min 84.7 89.1 97.7 94.4 82.0 86.3 56.1 59.7 38.4 46.8 34.0 / 49.9⇀

10 median 97.1 93.7 97.8 94.7 84.3 87.1 57.2 60.9 39.6 49.1 36.4 / 57.4⇀

10 max 97.3 93.9 98.0 95.1 87.3 89.0 68.2 66.3 41.9 51.1 39.5 / 64.6⇀

10 minLoss 97.1 93.7 98.0 95.1 87.3 89.0 68.2 66.3 41.6 51.1 39.5 / 63.3⇀

Table A.2: Detailed quantitative results. We report statistics of our results on standard clustering
benchmarks. For SVHN, we also report results with our Gaussian weighted loss (ω).

with a group of isometric transformations (e.g. rigid transformations), and it is also the case
for GMM with the group of affine transformations applied to both the mean and covariance
mixture parameters.

Note that we also tried to transform the samples to match the prototypes, which would
lead to an invariance to sample transformation. However, a trivial solution to corresponding
optimization problem is to learn "empty" prototypes and transformations of the samples into
empty images. For examples, for the MNIST case with affine transformations, we observed that
completely black prototypes were learned and any digit was transformed into a black image.
Although a regularization term could have prevented such behaviour, we argue that keeping
raw samples as target and transforming the prototypes is simpler and effective.

A.3 Model insights

Detailed quantitative results. We report detailed quantitative results for standard clustering
benchmarks in Table A.2.

Accuracy and loss correlation. Similar to standard K-means and GMM, there is a variation
in performances depending on the random initialization. We experimentally found that: (i)
runs seem to be mainly grouped into distinct modes, each corresponding to roughly the same
clustering quality; (ii) a run with a low loss usually leads to high clustering performances. We
launched 100 runs on MNIST-test dataset and plot the loss with respect to the accuracy for
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Figure A.1: Accuracy/loss correlation. We report loss and accuracy for DTI K-means on MNIST-test.

each run in Figure A.1. Except 2 outliers for the 100 runs, the runs with lower loss correspond
to the runs with better performances. This is verified in most of our experiments, where the
minLoss criterion clearly improves over the average performance.

Effect of the number of clusters K. Similar to many clustering methods, the selection of
the number of clusters is a challenge. We investigated if a purely quantitative analysis could
be applied to select K. In Figure A.2a, we plot the loss of DTI-Kmeans as a function of the
number of clusters for MNIST-test (left) and Notre-Dame (right). For MNIST-test, it is clear an
elbow method could be applied to select the good number of clusters. For Notre-Dame, the
quantitative analysis is not as conclusive but in this case, the correct number of clusters is not
clearly defined. In practice, we did not find the qualitative results on internet photo collections
to be very sensitive to this choice, as shown in Figure A.2b where learned prototypes are mostly
consistent across the different clustering results.

Constraining color transformation. While evaluating our approaches on real photograph
collections, we experimentally observed that a full affine color transformation module (12
parameters) was too flexible and as a result, prototypes were able to learn different patterns
hidden in each color channel. In Figure A.3, we show each R, G and B channel as a greyscale
image for two prototypes learned using a full affine color transformation module. One can
see that a second pattern is hidden in particular in the green channels. To avoid this effect, we
restricted the color transformation module to be a diagonal affine transformation corresponding
to 6 parameters in total.
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(a) Loss w.r.t varying numbers of clusters for MNIST-test (left) and Notre-Dame (right)

(b) Prototypes learned on Notre-Dame for different numbers of clusters

Figure A.2: Effect of K. (a) We report the loss of DTI K-means for different numbers of clusters. For
MNIST-test (left), the loss is averaged over 5 runs and for Notre-Dame (right), the loss corresponds to a
single run. (b) We show the prototypes learned on Notre-Dame for even numbers of clusters.
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Figure A.3: Learned prototypes and RGB decomposition. Two examples of learned prototypes (first
column) on Florence cathedral collection from Li and Snavely [2018] using a full color transformation
module (12 parameters). The 3 right columns correspond to R, G and B channels rescaled between 0 and
1. Note how the green channel is used to hide a completely different pattern from the other 2 channels.
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B Discovering Objects With Sprite Modeling

In this appendix, we provide quantitative semantic segmentation results (Appendix B.1),
insights of the model (Appendix B.2), training details (Appendix B.3) and additional qualitative
results (Appendix B.4).

B.1 Semantic segmentation results

We provide a quantitative evaluation of our approach in an unsupervised semantic segmentation
setting. We do not compare to state-of-the-art approaches as none of them explicitly model
nor output categories for objects. We argue that modeling categories for discovered objects
is crucial to analyse and understand scenes, and thus advocate such quantitative semantic
evaluation to assess the quality of any object-based image decomposition algorithm.

Evaluation. Motivated by standard practices from supervised semantic segmentation and
clustering benchmarks, we evaluate our unsupervised object semantic segmentation results by
computing the mean accuracy (mACC) and the mean intersection-over-union (mIoU) across
all classes (including background). We first compute the global confusion matrix on the same
320 images used for object instance segmentation evaluation. Then, we reorder the matrix with
a cluster-to-class mapping computed using the Hungarian algorithm [Kuhn and Yaw, 1955].
Finally, we average accuracy and IoU over all classes, including background, yielding mACC
and mIoU.

B.2 Model insights

Effect of K. Similar to standard clustering methods, our results are sensitive to the assumed
number of sprites K. A purely quantitative analysis could be applied to select K, e.g., in Fig-
ure B.1 we plot the loss as a function of the number of sprites for Tetrominoes and it is clear an
elbow method can be applied to correctly select 19 sprites. Qualitatively, using more sprites

Dataset K mACC mIoU

Tetrominoes [Greff et al., 2019] 20 99.5 ± 0.2 99.1 ± 0.4
Multi-dSprites [Kabra et al., 2019] 4 91.3↫

± 0.9 84.0↫
± 1.4

CLEVR6 [Johnson et al., 2017; Greff et al., 2019] 7 73.9 ± 2.1 56.3 ± 2.9

Table B.1: Semantic segmentation results. We evaluate our approach for unsupervised object semantic
segmentation results by computing the mean accuracy (mACC) and the mean intersection-over-union
(mIoU) across all classes (including background).
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Figure B.1: Effect of K. We report the loss obtained for varying number of sprites on Tetrominoes,
where the ground-truth number of different shapes is 19.

than the ground truth number typically yields duplicated sprites which we think is not that
harmful. For example, we use an arbitrary number of sprites (40) for the Instagram collections
and we have not found the discovered sprites to be very sensitive to this choice.

Effect of λ. The hyperparameter λ controls the weight of the regularization term that counts
the number of non-empty sprites used. In Figure B.2, we show qualitative results obtained
for different values of λ on Multi-dSprites. When λ is zero or small (here λ = 10↗5), the
optimization typically falls into bad local minima where multiple layers attempt to reconstruct
the same object. Increasing the penalization (λ = 10↗4) prevents this phenomenon by encour-
aging reconstructions using the minimal number of non-empty sprites. When λ = 10↗3, the
penalization is too strong and some objects are typically missed (last example).

Computational cost. Training our method on Tetrominoes, Multi-dSprites and CLEVR6
respectively takes approximately 5 hours, 3 days and 3.5 days on a single Nvidia GeForce
RTX 2080 Ti GPU. Our approach is quite memory efficient and for example on CLEVR6, we
can use a batch size of up to 128 on a single V100 GPU with 16GB of RAM as opposed to 4
in Greff et al. [2019] and 64 in Locatello et al. [2020].

B.3 Training details

Architecture. We use the same parameter predictor network architecture for all the exper-
iments. It is composed of a shared ResNet [He et al., 2016] backbone truncated after the
average pooling and followed by separate Multi-Layer Perceptrons (MLPs) heads predict-
ing sprite transformation parameters for each layer as well as the occlusion matrix. For the
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Figure B.2: Effect of ϖ. We show reconstructions and instance segmentations for different values of ϖ
on Multi-dSprites.

ResNet backbone, we use mini ResNet-321 (64 features) for images smaller than 65 → 65
and ResNet-18 (512 features) otherwise. When modeling large numbers of objects (> 3),
we increase the representation size by replacing the global average pooling by adaptive ones
yielding 4 → 4 → 64 features for mini ResNet-32 and 2 → 2 → 512 for ResNet-18. Each MLP
has the same architecture, with two hidden layers of 128 units.

Transformation sequences. Similar to DTI-Clustering [Monnier et al., 2020], we model
complex image transformations as a sequence of transformation modules which are successively
applied to the sprites. Most of the transformation modules we used are introduced in Monnier
et al. [2020], namely affine, projective and TPS modules modeling spatial transformations and
a color transformation module. We augment the collection of modules with two additional
spatial transformations implemented with spatial transformers [Jaderberg et al., 2015]:

1https://github.com/akamaster/pytorch_resnet_cifar10

https://github.com/akamaster/pytorch_resnet_cifar10
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Dataset T
lay

T
spr

T
bkg

Tetrominoes [Greff et al., 2019] col-pos - -
Multi-dSprites [Kabra et al., 2019] col-pos sim col
CLEVR6 [Johnson et al., 2017; Greff et al., 2019] col-pos proj col

GTSRB-8 [Stallkamp et al., 2012] - col-proj-tps col-proj-tps
SVHN [Netzer et al., 2011] - col-proj-tps col-proj-tps
Weizmann Horse [Borenstein and Ullman, 2004] - col-proj-tps col-proj-tps
Instagram collections [Monnier et al., 2020] - col-proj col-proj

Table B.2: Transformation sequences used.

• a positioning module parametrized by a translation vector and a scale value (3 parameters)
and used to model coarse layer-wise object positioning,

• a similarity module parametrized by a translation vector, a scale value and a rotation
angle (4 parameters).

The transformation sequences used for each dataset are given in Table B.2. All transforma-
tions for the multi-object benchmarks are selected to mimic the way images were synthetically
generated. For real images, we use the col-proj-tps default sequence when the ground truth
number of object categories is well defined and the col-proj sequence otherwise. Visualizing
sprites and transformations helps understanding the results and adapting the transformations
accordingly.

Implementation details. Both sprite parameters and predictors are learned jointly and end-
to-end using Adam optimizer [Kingma and Ba, 2015] with a 10↗6 weight decay on the
network parameters. Background, sprite appearances and masks are respectively initialized with
averaged images, constant value and Gaussian weights. To constrain sprite parameters in values
close to [0, 1], we use a softclip function implemented as a piecewise linear function yielding
identity inside [0, 1] and an affine function with 0.01 slope outside [0, 1]. We experimentally
found it tends to work better than (i) a traditional clip function which blocks gradients and (ii) a
sigmoid function which leads to very small gradients. Similar to Monnier et al. [2020], we adopt
a curriculum learning strategy of the transformations by sequentially adding transformation
modules during training at a constant learning rate until convergence, then use a multi-step
policy by multiplying the learning rate by 0.1 once convergence has been reached. For the
experiments with a single object on top of a background, we use an initial learning rate of
10↗3 and reduce it once. For the multi-object experiments, because spatial transformations are
much stronger, we use an initial value of 10↗4 and first train global layer-wise transformations,
using frozen sprites during the first epochs (initialized with constant value for appearances and
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Figure B.3: Learning binary masks. We compare results on Tetrominoes obtained with (right) and
without (left) injecting noise in masks.

Gaussian weights for masks). Once such transformations are learned, we learn sprite-specific
transformations if any and reduce after convergence the learning rate for the network parameters
only. Additionally, in a fashion similar to Monnier et al. [2020], we perform sprite and predictor
reassignment when corresponding sprite has been used for reconstruction less than 20/K%
of the images layers. We use a batch size of 32 for all experiments, except for GTSRB-8 and
SVHN where a batch size of 128 is used.

Learning binary masks. There is an ambiguity between learned mask and color values in
our raw image formation model. In Figure B.3, we show examples of sprites learned following
two settings: (i) a raw learning and (ii) a learning where we constrain mask values to be binary.
Although learned appearance images s

c (first row) and masks s
ϑ (second row) are completely

different, applying the masks onto appearances (third row) yields similar images, and thus
similar reconstructions of sample images. However, resulting sprites (last row) demonstrate
that the spatial extent of objects is not well defined when learning without any constraint.

Since constraining the masks to binary values actually resolves ambiguity and forces clear
layer separations, we follow the strategy adopted by Tieleman [2014] and Kosiorek et al. [2019]
to learn binary values, and propose to inject during training uniform noise ↑ [↔0.4, 0.4] into
the masks before applying our softclip. Intuitively, such stochasticity prevents the masks
from learning appearance aspects and can only be reduced with values close to 0 and 1.
We experimentally found this approach tends to work better than (i) explicit regularization
penalizing values outside of {0, 1} e.g. with a x ≃ x2(1 ↔ x)2 function and (ii) a varying
temperature parameter in a sigmoid function as advocated by Concrete/Gumbel-Softmax
distributions [Maddison et al., 2017; Jang et al., 2017].
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We compare our results obtained with and without injecting noise into the masks on
Tetrominoes, where shapes have clear appearances. Quantitatively, while our full model
reaches almost a perfect score for both ARI-FG and ARI metrics (resp. 99.6% and 99.8%),
these performances averaged over 5 runs are respectively 77.8% and 89.1% when noise is not
injected into the masks during learning. We show qualitative comparisons in Figure B.3. Note
that the masks learned with noise injection are binary and sharp, whereas the ones learned
without noise contain some appearance patterns.

B.4 Additional qualitative results

We provide more qualitative results on the multi-object synthetic benchmarks, namely Tetromi-
noes (Figure B.4), Multi-dSprites (Figure B.5) and CLEVR6 (Figure B.6). For each dataset,
we first show the discovered sprites (at the top), with colored borders to identify them in the
semantic segmentation results. We then show 10 random qualitative decompositions. From
left to right, each row corresponds to: input sample, reconstruction, semantic segmentation
where colors refer to the sprite border colors, instance segmentation where colors correspond to
different object instances, and full image decomposition layers where the borders are colored
with respect to their instance mask color. Note how we manage to successfully separate the
object instances as well as identify their categories and spatial extents.
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Figure B.4: Tetrominoes results. We show discovered sprites (top) and 10 random decomposition
results (bottom).
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Figure B.5: Multi-dSprites results. We show discovered sprites (top) and 10 random decomposition
results (bottom).
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Figure B.6: CLEVR6 results. We show discovered sprites (top) and 10 random decomposition results
(bottom).
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C Single-View Reconstruction Without Supervision

In this appendix, we present our custom differentiable rendering function (Appendix C.1),
insights of our model (Appendix C.2), additional details about the quantitative evaluation
(Appendix C.3) and implementation details (Appendix C.4).

C.1 Custom differentiable rendering

Our output images correspond to the soft rasterization of a textured mesh on top of a background
image. We observe divergence results when learning geometry from raw photometric compari-
son with the standard SoftRasterizer [Liu et al., 2019] and thus propose two key changes. In
the following, given a mesh M and a background B, we describe our rendering function R pro-
ducing the image Î = R(M, B). We first present SoftRasterizer formulation and its limitations,
then introduce our modifications. In the following, we write pixel-wise multiplication with ⇒

and the division of image-sized tensors corresponds to pixel-wise division.

SoftRasterizer formulation. Given a 2D pixel location i, the influence of a face j is modeled
by an occupancy function:

OSR(i, j) = sigmoid
(

↽(i, j)
ϖ

)
, (1)

where ϖ is a temperature, ↽(i, j) is the signed Euclidean distance between pixel i and projected
face j. Let us call L ↔ 1 the maximum number of faces intersecting the ray associated to a
pixel and sort, for each pixel, the intersecting faces by increasing depth. Image-sized maps for
occupancy Oϖ, color Cϖ and depth Dϖ are built associating to each pixel the ↼-th intersecting
face attributes. Background is modeled as additional maps such that OL = 1, CL = B, and
DL = dbg is a constant, far from the camera. The SoftRasterizer’s aggregation function CSR

merges them to render the final image Î:

CSR(O1:L, C1:L, D1:L) =
L∑

ϖ=1

Oϖ ⇒ exp(D↔
ϖ/ϱ)

∑
k Ok ⇒ exp(D↔

k/ϱ) ⇒ Cϖ, (2)

where ϱ is a temperature parameter, D
↔
ϖ = dfar↗Dε

dfar↗dnear
and dnear, dfar correspond to near/far cut-off

distances. This formulation hence relies on 5 hyperparameters (ϖ, ϱ, dnear, dfar, dbg) and default
values are ϖ = ϱ = 10↗4, dnear = 1, dfar = 100 and dfar↗dbg

dfar↗dnear
= ◁ = 10↗3.

The formulation introduced in Equation (2) has one main limitation: gradients don’t flow
well through O1:L obtained by soft rasterization, and thus vertex positions cannot be optimized
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by raw photometric comparison. The simple case of a single face on a black background gives:

Î = O1 ⇒ eD→
1/ϑ

O1 ⇒ eD→
1/ϑ + eϖ/ϑ

⇒ C1 ∋
O1 ⇒ eD→

1/ϑ

O1 ⇒ eD→
1/ϑ

⇒ C1 = C1, (3)

for almost all O1, D
↔
1. Indeed, considering x, ε > 0, we have xe(ϖ+ϱ)/ϑ

△ eϖ/ϑ iif x △ e↑ϱ/ϑ.
Even in the best case where ε = ◁ = 10↗3 (i.e., the object is close to dfar), this holds for all
x △ e↗10

∋ 4 → 10↗5! We found that tuning ϱ was not sufficient to mitigate the issue, one
would have to tune ϱ, dnear, dfar, dbg simultaneously to enable the optimization of the vertex
positions.

Our layered formulation. Inspired by layered image models [Jojic and Frey, 2001; Monnier
et al., 2021], we propose to model the rendering of a mesh as the layered composition of its
projected face attributes. More specifically, given occupancy O1:L and color C1:L maps, we
render an image Î through the classical recursive alpha compositing:

C(O1:L, C1:L) =
L∑

ϖ=1

[ L∏

k<ϖ

(1 ↔ Ok)
]

⇒ Oϖ ⇒ Cϖ. (4)

This formulation has a clear interpretation where color maps are overlaid on top of each other
with a transparency corresponding to their occupancy map. Note that we choose to drop the
explicit depth dependency as all 3D coordinates (including depth) of a vertex already receive
gradients by 3D-to-2D projection. Our layered aggregation used together with the SoftRaster-
izer’s occupancy function OSR results in face inner-borders that are visually unpleasant. We
thus instead use the occupancy function introduced in Chen et al. [2019b] defined by:

O(i, j) = exp(min(0,
↽(i, j)

ϖ
)). (5)

Compared to OSR, this function yields constant occupancy of 1 inside the faces. In addition to its
simplicity, our differential renderer has two main advantages compared to SoftRasterizer. First,
gradients can directly flow through occupancies O1:L and the vertex positions can be updated
by photometric comparison. Second, our formulation involves only one hyperparameter (ϖ)
instead of five, making it easier to use.

C.2 Model insights

Progressive conditioning. Figure C.1 shows the results obtained on CompCars [Yang et al.,
2015] at the end of each stage of the training. Given an input image (leftmost column), we
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Figure C.1: Progressive conditioning on CompCars. Given an input image (leftmost column), we
show for each training stage, from left to right, a side view of the predicted shape, the texture image and
the background image.

show for each training stage the predicted outputs. From left to right, they correspond to a side
view of the shape, the texture image and the background image. We can observe that all shape,
texture and background models gradually specialize to the instance represented in the input. In
particular, this allows us to start with a weak background model to avoid degenerate solutions
and to end up with a powerful background model to improve the reconstruction quality. Also
note how all the texture images are aligned.

Neighbor reconstruction. When computing the neighbor reconstructions, we explicitly find
neighbors that have a viewpoint different from the predicted viewpoint. More specifically, for
a given input, we compute the angle between the predicted rotation matrix and all rotation
matrices of the memory bank. Following standard conventions, such an angle lies in [0→, 180→].
Then, we select a target angle range as follows: we split the range of angles [20→, 180→] into
a partition of V uniform and continuous bins, and we uniformly sample one of the V angle
ranges. Finally, we look for neighbors in the subset of instances having an angle within the
selected range. In all experiments, we use V = 5.

We use a total angle range of [20→, 180→] instead of [0→, 180→] to remove instances having
a similar pose. Note that we first tried to find neighbors of different poses without further
constraint (which amounts to using V = 1) but we found that learned latent codes were
specialized by viewpoints, e.g., front / back view images corresponding to a shape mode with
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(a) Optimization in Insafutdinov and
Dosovitskiy [2018]

(b) Optimization in Henderson and Ferrari [2019]; Goel
et al. [2020]; Tulsiani et al. [2020]

Figure C.2: Prior optimizations for joint 3D/pose learning.

unrealistic side views, and side view images corresponding to a shape mode with unrealistic
front / back views.

Joint 3D and pose learning. We analyze prior works on joint 3D and pose learning, illus-
trated in Figure C.2, and compare them with our proposed optimization scheme, illustrated
in Figure C.3. Prior optimization schemes can be split in two groups: (i) learning through the
minimal error reconstruction [Insafutdinov and Dosovitskiy, 2018], and (ii) learning through
an expected error [Henderson and Ferrari, 2019; Goel et al., 2020; Tulsiani et al., 2020].

In Insafutdinov and Dosovitskiy [2018], all reconstructions associated to the different pose
candidates are computed and both 3D and poses are updated using the reconstruction yielding
the minimal error (see Figure C.2a). We identified two major issues. First, because the other
poses are not updated for a given input, we observed that a typical failure case corresponds
to a collapse mode where only a single pose (or a small subset of poses) is used for all inputs.
Indeed, there is no particular constraint that encourages the use of all pose candidates. Second,
inference is not efficient as the object has to be rendered from all poses to find the correct object
pose.

In Henderson and Ferrari [2019]; Goel et al. [2020]; Tulsiani et al. [2020], 3D and poses are
updated using an expected reconstruction loss (see Figure C.2b). While this allows to constrain
the use of all pose candidates with a regularization on the predicted probabilities, we identified
one major weakness common to these frameworks. Because the 3D receives gradients from
all views, we observed a typical failure case where the 3D tries to fit the target input from
all pose candidates yielding inaccurate texture and geometry. We argue such behaviour was
not observed in previous works as they typically use a symmetry prior which prevents it from
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(a) 3D-step (b) P-step

Figure C.3: Our alternate 3D / pose optimization. Compared to prior works, we propose an optimiza-
tion that alternates between 2 steps. (a) We update the 3D using the most likely pose candidate (3D-step).
(b) We update the pose candidates and associated probabilities using the expected loss (P-step).

happening. Note that CMR [Goel et al., 2020] proposes to directly optimize for each training
image a set of parameters corresponding to the pose candidates. This procedure not only
involves memory issues as the number of parameters scales linearly with the number of training
images, but also inference problems for new images. To mitigate the issue, they propose to use
the learned poses as ground-truth to train an additional network that performs pose estimation
given a new image.

In contrast, our proposed alternate optimization, illustrated in Figure C.3, leverages the best
of both worlds: (i) 3D receives gradients from the most likely reconstruction, and (ii) all poses
are updated using an expected loss. In practice, we alternate the optimization every new batch
of inputs, and we define one iteration as either a a 3D-step or a P-step.

C.3 Quantitative evaluation

ICP alignment for better 3D evaluation. We align shapes using our gradient-based version
of the Iterative Closest Point (ICP) [Besl and McKay, 1992] with anisotropic scaling before
evaluating 3D reconstructions. For consistency, we use the same protocol across benchmarks
and advocate to do so for future comparisons. First, meshes are centered and normalized so that
they exactly fit inside the cube of unit length [↔0.5, 0.5]3; this is important to obtain results that
are comparable. Second, we sample 100k points on the mesh surfaces. Third, we run our ICP
implementation which minimizes by gradient descent the Chamfer-L2 distance between the
point clouds by jointly optimizing 3 translation parameters, 6 rotation parameters [Zhou et al.,
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2019] and 3 scaling parameters. In practice, we use Adam optimizer [Kingma and Ba, 2015], a
learning rate of 0.01 and 100 iterations. Note that we use this gradient-based version of ICP
instead of the classical iterative formulation as we found it to diverge when optimizing scale.

We argue that an ICP pre-processing is crucial for an unbiased 3D reconstruction evaluation
and provide real examples in Figure C.4 to support our claim. Rows correspond to different
transformations of the same canonical shape, and for each row, we show: the transformation
used, the resulting 3D shape, a rendering example as well as Chamfer-L1 distance to the
canonical shape. We overlay the visuals with green contours representing the canonical shape
and the canonical rendering for easier comparisons. We can make two important observations.
First, although all the transformed shapes are excellent 3D reconstructions of the canonical
shape, they result in dramatically poor performances. As a comparison, these performances are
similar to our ShapeNet results with ICP when the model outputs degenerate reconstructions.
Pre-processing the shapes using an ICP with anisotropic scaling mitigates this issue. Second, as
shown by the rendering examples, for all these different shapes, we can find a pose that yields
almost identical renderings. This hence emphasizes the numerous shape/pose ambiguities that
arise from a given rendered image. As a result, it is extremely unlikely that a fully unsupervised
SVR system predicting from a single image both the 3D shape and the pose will recover the
exact pair of shape/pose used for annotations. In this case, the cameras used for rendering are
the same and we do not even consider focal variations, which raises even more ambiguities.

ShapeNet results without ICP. For completeness, we provide quantitative results obtained
without ICP on the ShapeNet benchmark in Table C.1. We indicate the supervision used and
visually separate methods using multi-view supervision. We report (i) results from category-
agnostic versions (Cat. agn) of DVR [Niemeyer et al., 2020] and SoftRas [Liu et al., 2019]
presented in Niemeyer et al. [2020] and (ii) divergence results obtained by removing silhouette
supervision from DVR and SoftRas.

C.4 Implementation details

Network architecture. We use the same neural network architecture for all experiments. The
encoder is composed of 4 CNN backbones followed by separate Multi-Layer Perceptron (MLP)
heads predicting a rendering parameter. More specifically, the 4 backbones are respectively
used to predict: (i) shape code zsh and scale s; (ii) texture code ztx; (iii) background code zbg;
(iv) rotations r1:K , translations t1:K , and pose probabilities p1:K . Note that using a shared
backbone instead of separated ones also yields great results and is advocated for decreasing
the memory footprint and training time; the major benefit from using separated backbones
is to produce slightly more detailed textures and background. We follow prior works in
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Figure C.4: 3D reconstruction evaluation with and without ICP. Rows correspond to results obtained
for transformed versions of a canonical shape and columns correspond to, from left to right, the transfor-
mation used, resulting 3D shape, a rendering example and Chamfer-L1 distance to the canonical shape.
Green contours represent the shape and rendering from the canonical object for visual comparisons.

SVR [Groueix et al., 2018; Mescheder et al., 2019; Niemeyer et al., 2020; Goel et al., 2020]
and use randomly initialized ResNet-18 [He et al., 2016] as backbone. Each MLP head has the
same architecture with 3 hidden layers of 128 units and ReLU activations. The last layer of the
MLP heads for shape, texture and background codes is initialized to zero to avoid discontinuity
when increasing the size of the latent codes. The final activation of the MLP heads for scale,
rotation, and translation is a tanh function and the output is scaled and shifted using predefined
constants in order to control their range (see Table C.2 for selected ranges). The learnable parts
of the decoder are the shape deformation network s⇁ and the two CNN generators t⇁ and b⇁

which respectively output 64 → 64 images for texture and background. The MLP modeling the
deformations has 3 hidden layers, ReLU activations and 128 units for real images; we use an
increased number of units for ShapeNet (512) which provides a small boost in performances.
The CNN generators share the same architecture which is identical to the generator used in
GIRAFFE [Niemeyer and Geiger, 2021]. We refer the reader to Niemeyer and Geiger [2021]
for details.
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Method Ours SDF-SRN DVR DVR SoftRas DVR DVR SoftRas
Cat. agn. ⊜ ⊜

MV ⊜ ⊜ ⊜ ⊜ ⊜

CK ⊜ ⊜ ⊜ ⊜ ⊜ ⊜ ⊜

S ⊜ ⊜ ⊜ ⊜ ⊜

airplane 0.186 0.173 0.157 Div. Div. 0.151 0.190 0.149
bench 0.257 - 0.386 Div. Div. 0.232 0.210 0.241
cabinet 0.284 - 0.849 Div. Div. 0.257 0.220 0.231
car 0.251 0.177 0.282 Div. Div. 0.198 0.196 0.221
chair 0.543 0.333 0.464 Div. Div. 0.249 0.264 0.338
display 0.344 - 0.968 Div. Div. 0.281 0.255 0.284
lamp 0.987 - 0.688 Div. Div. 0.386 0.413 0.381
phone 0.456 - 1.412 Div. Div. 0.147 0.148 0.131
rifle 0.504 - 0.528 Div. Div. 0.131 0.175 0.155
sofa 0.335 - 0.665 Div. Div. 0.218 0.224 0.407
speaker 0.356 - 0.535 Div. Div. 0.321 0.289 0.320
table 0.351 - 0.442 Div. Div. 0.283 0.280 0.374
vessel 0.384 - 0.400 Div. Div. 0.220 0.245 0.233

mean 0.403 - 0.598 Div. Div. 0.236 0.239 0.266

Table C.1: ShapeNet comparison without ICP. We report Chamfer-L1 ↙, supervisions are: Multi-
Views, Camera or Keypoints, Silhouettes. We separate methods using multi-views and best results are
highlighted in each group.

Other design choices. In all experiments, the predefined anisotropic scaling used to deform
the icosphere into an ellipsoid is [1, 0.7, 0.7]. In Table C.2, we detail other design choices that
are specific to all categories of ShapeNet [Chang et al., 2015] (second column) or all real-image
datasets (third column). This notably includes a predetermined global scaling of the ellipsoid, a
camera defined by a focal length f or a field of view (fov), as well as scaling, translation and
rotation ranges.

Training. In all experiments, we use a batch size of 32 images of size 64 → 64 and Adam
optimizer [Kingma and Ba, 2015] with a constant learning rate of 10↗4 that is divided by 5 at
the very end of the training for a few epochs. The training corresponds to 4 stages where latent
code dimensions are increased at the beginning of each stage and the network is then trained
until convergence. We use dimensions 0/2/8/64 for the shape code, 2/8/64/512 for the texture
code, and 4/8/64/256 for the background code if any. In line with the curriculum modeling
of Monnier et al. [2020], we found it beneficial for the first stage to gradually increase the
model complexity: we first learn to position the fixed ellipsoid in the image, then we allow
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Design type ShapeNet Real-image

ellipsoid scale 0.4 0.6
camera f = 3.732 fov = 30→

sx/sy/sz 1 ± 0.5 1 ± 0.3
tx/ty 0 ± 0.5 0 ± 0.3
tz (depth) 2.732 2.732 ± 0.3
ra (azimuth) [0→, 360→] [0→, 360→]
re (elevation) 30→ [↔10→, 30→]
rr (roll) 0→ [↔30→, 30→]

Table C.2: Design choices. Following standard practices [Liu et al., 2019; Niemeyer et al., 2020] on
ShapeNet [Chang et al., 2015], we keep the default rendering values used to generate the images for the
focal length f , the distance to the camera tz and the elevation re. For real images, we keep the classical
value of 2.732 for the distance to the camera tz and use a field of view (fov) of 30→. Note that we did
not finetune these parameters, they were selected once through visual comparisons on a toy example.

the ellipsoid to be deformed, and finally we allow scale variabilities. In particular, we found
this procedure prevents the model to learn prototypical shapes with unrealistic proportions.
In the following, we describe other training details specific to ShapeNet [Chang et al., 2015]
benchmark and real-image datasets.

ShapeNet dataset. We use the same training strategy for all categories. We train the first stage
for 50k iterations, and each of the other stage for 250k iterations, where one iteration
corresponds to either a 3D-step or a P-step of our alternate optimization. We do not
learn a background model as all images are rendered on top of a white background.
However, we found that our system learned in such synthetic setting was prone to a
bad local minimum where the predicted textures have white regions that accommodate
for wrong shape prediction. Intuitively, this is expected as the system has no particular
signal to distinguish white background regions from white object parts. To mitigate the
issue, we constrain our texture model as follows: (i) during the first stage, the predicted
texture image is averaged to yield a constant texture, and (ii) during the other stages, we
occasionally use averaged textures instead of the real ones. More specifically, we sample
a Bernoulli variable with probability p = 0.2 at each iteration and average the predicted
texture image in case of success. We found this simple procedure to work well to resolve
such shape/texture ambiguity.

Real-image datasets. We use the same training strategy for all real-image datasets. We train
each stage for roughly 750k iterations, where one iteration either corresponds to a 3D-step
or a P-step of our alternate optimization. Learning our structured autoencoder in such
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real-image scenario, without silhouette nor symmetry constraints, is very challenging.
We found our system sometimes falls into a bad local minimum where the texture model
is specialized by viewpoints, e.g., dark cars always correspond to a frontal view and light
cars always correspond to a back view. To alleviate the issue, we encourage uniform
textures by occasionally using averaged textures instead of the real ones during rendering,
as done on the ShapeNet benchmark. More specifically, we sample a Bernoulli variable
with probability p = 0.2 at each iteration and average the predicted texture image in case
of success. We observed that it was very effective in practice, and we also found it helped
preventing the object texture from modeling background regions. We do not use such
technique in the last stage to increase the texture accuracy.
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D Differentiable Blocks World

In this appendix, we present additional video results (Appendix D.1), details about the DTU
benchmark (Appendix D.2) and implementation details (Appendix D.3).

D.1 Additional video results

We present additional results in the form of videos at: www.tmonnier.com/DBW. Videos
are separated in different sections depending on the experiment type. First, we provide view
synthesis videos (rendered using a circular camera path), further outlining the quality of
both our renderings and our primitive-based 3D reconstruction. Second, we include videos
for physics-based simulations. Such simulations were produced through Blender by simply
uploading our output primitive meshes. Note that for modeling primitive-specific motions in
Blender (e.g., in our teaser figure), primitives should not overlap at all, thus requiring a small
preprocessing step to slightly move the primitives for a clear separation. Because each primitive
is its own mesh, this operation is easily performed within Blender. Finally, we provide video
results where we perform scene editing and compare our amodal view synthesis results to the
ones of Nerfacto introduced in Nerfstudio [Tancik et al., 2023]. Models for amodal synthesis
are optimized on a homemade indoor scene built from a forward-facing capture only. We use
Nerfstudio for data processing and data convention.

D.2 DTU benchmark

In Figure D.1, we show for each scene a subset of the input images as well as 360→ renderings
of the GT point clouds obtained through a structured light scanner. To compute performances,
we use the evaluation: https://github.com/jzhangbs/DTUeval-python.

D.3 Implementation details

Icosphere and superquadric UV mapping. We use spherical coordinates that we correct to
build our texture mapping for the unit icosphere. Figure D.2 shows our process with an example.
Specifically, we retrieve for each vertex its spherical coordinates ε ↑ [↔ε

2 , ε
2 ] and ▷ ↑ [↔ϑ, ϑ]

which are linearly mapped to the UV space [0, 1]2. Because such parametrization presents
discontinuities and strong triangle deformations at the poles, we perform two corrections. First,
we fix discontinuities by copying the border pixels involved (using a circular padding on the
texture image) and introducing new 2D vertices such that triangles do not overlap anymore.
Second, we avoid distorted triangles at the poles by creating for each triangle, a new 2D vertex

https://www.tmonnier.com/DBW
https://github.com/jzhangbs/DTUeval-python
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Input (subset) View 1 View 2 View 3 View 4 View 5

Figure D.1: DTU scenes with ground-truth. We show a subset of the input images as well as renderings
of the GT point clouds. From top to bottom, scenes are: S24, S31, S40, S45, S55, S59, S63, S75,
S83, S105.
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(a) Raw spherical coordinates (b) Fixing border discontinuities (c) Fixing distortions at the poles

Figure D.2: Our icosphere UV-mapping. We illustrate different UV parametrizations using raw
spherical coordinates (a) as well as our modified coordinates to fix discontinuities (b) and to prevent
distortions at the poles (c). For each parametrization, we show the texture image with the face edges
representing the UV-mapping as well as a rendering example of the associated icosphere.

positioned in the middle of the other two vertices. As detailed in the main paper, we derive
a superquadric mesh from a unit icosphere in such a way that each vertex of the icosphere is
continuously mapped to the superquadric vertex. As a result, the texture mapping defined for
the icosphere is directly transferred to our superquadric meshes without any modification.

Design choices. Except constants related to the world scale, orientation and position in the
3D space w.r.t. to the known cameras, all our experiments share the same design choices.
Specifically, all the following design choices are defined for a canonical 3D scene assumed to
be centered and mostly contained in the unit cube, with a y-axis orthogonal to the ground and
pointing towards the sky. We roughly estimate the scene-specific constants related to the world
scale and pose (through coarse visual comparisons or using the camera locations), and apply
them to our final scene model to account for the camera conventions.

The background corresponds to a level-2 icosphere (320 faces), the ground plane is sub-
divided into 128 uniform faces (for visual purposes) and superquadric meshes are derived
from level-1 icospheres (80 faces). The scale for the background and the ground is set to 10.
The ground is initialized perpendicular to the y-axis and positioned at [0, ↔0.9, 0].The poses
of our primitive blocks are initialized using a Gaussian distribution for the 3D translation
and a random 6D vector for the rotation such that rotations are uniformly distributed on the
unit sphere. We parametrize their scale with an exponential added to a minimum scale value
of 0.2 to prevent primitives from becoming too small. These scales are initialized with a
uniform distribution in [0.5, 1.5] and multiplied by a constant block scale ratio of 0.25 to yield
primitives smaller than the scene scale. The superquadric shape parameters are implemented
with a sigmoid linearly mapped in [0.1, 1.9] and are initialized at 1 (thus corresponding to a
raw icosphere). Transparency values are parametrized with a sigmoid and initialized at 0.5. All
texture images have a size of 256 → 256, are parametrized using a sigmoid and are initialized
with small Gaussian noises added to gray images.
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Optimization details. All our experiments share the same optimization details. We use
Pytorch3D framework [Ravi et al., 2020] to build our custom differentiable rendering process
and use the default hyperparameter ϖ = 10↗4. Our model is optimized using Adam [Kingma
and Ba, 2015] with a batch size of 4 for roughly a total of 25k iterations. We use learning rates
of 0.05 for the texture images and 0.005 for all other parameters, and divide them by 10 for
the last 2k iterations. Following our curriculum learning process, we optimize the model for
the first 10k iterations by downsampling all texture images by 8. Then, we optimize using the
full texture resolution during the next 10k iterations. Finally, to further increase the rendering
quality, we threshold the transparency values at 0.5 to make them binary, remove regularization
terms related to transparencies (i.e., Lparsi and Lover), divide the weights for the other terms
Lperc and LTV by 10, decrease the smoothness rendering parameter ϖ to 5 → 10↗6 and finetune
our model for the final 5k iterations. In particular, this allows the model to output textures that
are not darken by non-binary transparencies. During the optimization, we systematically kill
blocks reaching a transparency lower than 0.01 and at inference, we only show blocks with
a transparency greater than 0.5. Similar to [Paschalidou et al., 2021], we use λ = 1.95 and
0 = 0.005 in our overlap penalization.
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